The uniform tilings are the simplest application of these mutations, although more complex patterns can be expressed within a fundamental domain.
This article expressed progressive sequences of uniform tilings within symmetry families.
Mutations of orbifolds
Orbifolds with the same structure can be mutated between different symmetry classes, including across curvature domains from spherical, to Euclidean to hyperbolic. This table shows mutation classes.[1] This table is not complete for possible hyperbolic orbifolds.
Orbifold
Spherical
Euclidean
Hyperbolic
o
-
o
-
pp
22, 33 ...
∞∞
-
*pp
*22, *33 ...
*∞∞
-
p*
2*, 3* ...
∞*
-
p×
2×, 3× ...
∞×
**
-
**
-
*×
-
*×
-
××
-
××
-
ppp
222
333
444 ...
pp*
-
22*
33* ...
pp×
-
22×
33×, 44× ...
pqq
222, 322 ... , 233
244
255 ..., 433 ...
pqr
234, 235
236
237 ..., 245 ...
pq*
-
-
23*, 24* ...
pq×
-
-
23×, 24× ...
p*q
2*2, 2*3 ...
3*3, 4*2
5*2 5*3 ..., 4*3, 4*4 ..., 3*4, 3*5 ...
*p*
-
-
*2* ...
*p×
-
-
*2× ...
pppp
-
2222
3333 ...
pppq
-
-
2223...
ppqq
-
-
2233
pp*p
-
-
22*2 ...
p*qr
-
2*22
3*22 ..., 2*32 ...
*ppp
*222
*333
*444 ...
*pqq
*p22, *233
*244
*255 ..., *344...
*pqr
*234, *235
*236
*237..., *245..., *345 ...
p*ppp
-
-
2*222
*pqrs
-
*2222
*2223...
*ppppp
-
-
*22222 ...
...
*n22 symmetry
Regular tilings
Family of regular hosohedra · *n22 symmetry mutations of regular hosohedral tilings: nn