Continuous probability distribution
Unit Weibull
Probability density function
Cumulative distribution function
Parameters
α
>
0
{\displaystyle \alpha >0\,}
(real)
β
>
0
{\displaystyle \beta >0\,}
(real) Support
x
∈
(
0
,
1
)
{\displaystyle x\in (0,1)\,}
PDF
1
x
α
β
(
−
log
x
)
β
−
1
exp
[
−
α
(
−
log
x
)
β
]
{\displaystyle {\frac {1}{x}}\,\alpha \,\beta \,(-\log x)^{\beta -1}\exp \left[-\alpha \,(-\log x)^{\beta }\right]}
CDF
exp
[
−
α
(
−
log
x
)
β
]
{\displaystyle \exp \left[-\alpha \,(-\log x)^{\beta }\right]}
Quantile
exp
[
−
(
−
log
p
α
)
1
β
]
,
0
<
p
<
1
{\displaystyle \exp \left[-\left({\frac {-\log p}{\alpha }}\right)^{\frac {1}{\beta }}\right],\quad 0<p<1}
Skewness
μ
3
′
−
3
μ
2
′
μ
+
μ
3
σ
3
{\displaystyle {\frac {\mu '_{3}-3\mu '_{2}\mu +\mu ^{3}}{\sigma ^{3}}}}
Excess kurtosis
μ
4
′
−
4
μ
3
′
μ
+
6
μ
2
′
μ
2
−
3
μ
4
σ
4
{\displaystyle {\frac {\mu '_{4}-4\mu '_{3}\mu +6\mu '_{2}\mu ^{2}-3\mu ^{4}}{\sigma ^{4}}}}
MGF
∑
n
=
0
∞
(
−
1
)
n
n
!
α
n
/
β
Γ
(
n
β
+
1
)
{\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!\,\alpha ^{n/\beta }}}\,\Gamma \left({\frac {n}{\beta }}+1\right)}
The unit-Weibull (UW) distribution is a continuous probability distribution with domain on
(
0
,
1
)
{\displaystyle (0,1)}
. Useful for indices and rates , or bounded variables with a
(
0
,
1
)
{\displaystyle (0,1)}
domain . It was originally proposed by Mazucheli et al [ 1] using a transformation of the Weibull distribution.
Definitions
Probability density function
It's probability density function is defined as:
f
(
x
;
α
,
β
)
=
1
x
α
β
(
−
log
x
)
β
−
1
exp
[
−
α
(
−
log
x
)
β
]
{\displaystyle f(x;\alpha ,\beta )={\frac {1}{x}}\,\alpha \,\beta \,(-\log x)^{\beta -1}\exp \left[-\alpha \,(-\log x)^{\beta }\right]}
Cumulative distribution function
And it's cumulative distribution function is:
F
(
x
;
α
,
β
)
=
exp
[
−
α
(
−
log
x
)
β
]
{\displaystyle F(x;\alpha ,\beta )=\exp \left[-\alpha \,(-\log x)^{\beta }\right]}
Quantile function
The quantile function of the UW distribution is given by:
Q
(
p
)
=
exp
[
−
(
−
log
p
α
)
1
β
]
,
0
<
p
<
1.
{\displaystyle Q(p)=\exp \left[-\left({\frac {-\log p}{\alpha }}\right)^{\frac {1}{\beta }}\right],\quad 0<p<1.}
Having a closed form expression for the quantile function, may make it a more flexible alternative for a quantile regression model against the classical Beta regression model.
Properties
Moments
The
r
{\displaystyle r}
th raw moment of the UW distribution can be obtained through:
μ
r
′
=
E
(
X
r
)
=
E
(
e
−
r
Y
)
=
M
Y
(
−
r
)
=
∑
n
=
0
∞
(
−
1
)
n
n
!
α
n
/
β
Γ
(
n
β
+
1
)
.
{\displaystyle \mu '_{r}=\mathbb {E} (X^{r})=\mathbb {E} (e^{-rY})=M_{Y}(-r)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n!\,\alpha ^{n/\beta }}}\,\Gamma \left({\frac {n}{\beta }}+1\right).}
Skewness and kurtosis
The skewness and kurtosis measures can be obtained upon substituting the raw moments from the expressions:
s
k
e
w
n
e
s
s
=
μ
3
′
−
3
μ
2
′
μ
+
μ
3
σ
3
,
k
u
r
t
o
s
i
s
=
μ
4
′
−
4
μ
3
′
μ
+
6
μ
2
′
μ
2
−
3
μ
4
σ
4
{\displaystyle {\mathit {skewness}}={\frac {\mu '_{3}-3\mu '_{2}\mu +\mu ^{3}}{\sigma ^{3}}},{\mathit {kurtosis}}={\frac {\mu '_{4}-4\mu '_{3}\mu +6\mu '_{2}\mu ^{2}-3\mu ^{4}}{\sigma ^{4}}}}
Hazard rate
The hazard rate function of the UW distribution is given by:
h
(
x
;
α
,
β
)
=
f
(
x
;
α
,
β
)
1
−
F
(
x
;
α
,
β
)
=
α
β
(
−
log
x
)
β
−
1
exp
[
−
α
(
−
log
x
)
β
]
x
(
1
−
exp
[
−
α
(
−
log
x
)
β
]
)
,
0
<
x
<
1.
{\displaystyle h(x;\alpha ,\beta )={\frac {f(x;\alpha ,\beta )}{1-F(x;\alpha ,\beta )}}={\frac {\alpha \beta \,(-\log x)^{\beta -1}\exp \left[-\alpha (-\log x)^{\beta }\right]}{x\left(1-\exp \left[-\alpha (-\log x)^{\beta }\right]\right)}},\quad 0<x<1.}
Parameter estimation
Let
x
=
(
x
1
,
…
,
x
n
)
{\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{n})}
be a random sample of size
n
{\displaystyle n}
from the UW distribution with probability density function defined before. Then, the log-likelihood function of
θ
=
(
α
,
β
)
{\displaystyle {\boldsymbol {\theta }}=(\alpha ,\beta )}
is:
ℓ
(
θ
;
x
)
=
n
(
log
α
+
log
β
)
−
∑
i
=
1
n
log
x
i
+
(
β
−
1
)
∑
i
=
1
n
log
(
−
log
x
i
)
−
α
∑
i
=
1
n
(
−
log
x
i
)
β
{\displaystyle {\begin{aligned}\ell ({\boldsymbol {\theta }};\mathbf {x} )&=n(\log \alpha +\log \beta )-\sum _{i=1}^{n}\log x_{i}+(\beta -1)\sum _{i=1}^{n}\log(-\log x_{i})-\alpha \sum _{i=1}^{n}(-\log x_{i})^{\beta }\end{aligned}}}
The likelihood estimate
θ
^
{\displaystyle {\hat {\boldsymbol {\theta }}}}
of
θ
{\displaystyle {\boldsymbol {\theta }}}
is obtained by solving the non-linear equations
∂
ℓ
∂
α
=
n
α
−
∑
i
=
1
n
(
−
log
x
i
)
β
=
0
,
{\displaystyle {\frac {\partial \ell }{\partial \alpha }}={\frac {n}{\alpha }}-\sum _{i=1}^{n}(-\log x_{i})^{\beta }=0,}
and
∂
ℓ
∂
β
=
n
β
+
∑
i
=
1
n
log
(
−
log
x
i
)
−
α
∑
i
=
1
n
(
−
log
x
i
)
β
log
(
−
log
x
i
)
=
0.
{\displaystyle {\frac {\partial \ell }{\partial \beta }}={\frac {n}{\beta }}+\sum _{i=1}^{n}\log(-\log x_{i})-\alpha \sum _{i=1}^{n}(-\log x_{i})^{\beta }\log(-\log x_{i})=0.}
The expected Fisher information matrix of
θ
=
(
α
,
β
)
{\displaystyle {\boldsymbol {\theta }}=(\alpha ,\beta )}
based on a single observation is given by
I
(
θ
)
=
[
I
i
j
]
=
(
1
α
1
α
β
(
1
−
γ
−
log
α
)
1
α
β
(
1
−
γ
−
log
α
)
1
β
2
[
π
2
6
+
(
1
−
γ
−
log
α
)
2
]
)
,
{\displaystyle \mathbf {I} ({\boldsymbol {\theta }})=[I_{ij}]={\begin{pmatrix}{\frac {1}{\alpha }}&{\frac {1}{\alpha \beta }}(1-\gamma -\log \alpha )\\{\frac {1}{\alpha \beta }}(1-\gamma -\log \alpha )&{\frac {1}{\beta ^{2}}}\left[{\frac {\pi ^{2}}{6}}+(1-\gamma -\log \alpha )^{2}\right]\end{pmatrix}},}
where
π
≃
3.141593
{\displaystyle \pi \simeq 3.141593}
and
γ
≃
0.577216
{\displaystyle \gamma \simeq 0.577216}
is the Euler’s constant .
When
β
=
1
{\displaystyle \beta =1}
,
x
{\displaystyle x}
follows the power function distribution and the
r
{\displaystyle r}
th raw moment of the UW distribution becomes:
μ
r
′
=
E
(
X
r
)
=
α
r
+
α
,
r
=
1
,
2
,
…
.
{\displaystyle \mu '_{r}=\mathbb {E} (X^{r})={\frac {\alpha }{r+\alpha }},\quad r=1,2,\ldots .}
In this case, the mean , variance , skewness and kurtosis, are:
μ
=
α
1
+
α
,
σ
2
=
α
(
1
+
α
)
2
(
2
+
α
)
,
{\displaystyle \mu ={\frac {\alpha }{1+\alpha }},\qquad \sigma ^{2}={\frac {\alpha }{(1+\alpha )^{2}(2+\alpha )}},}
skewness
=
2
(
1
−
α
)
(
2
+
α
)
1
+
2
α
,
kurtosis
=
3
(
2
+
α
)
(
2
−
α
+
3
α
2
)
α
(
3
+
α
)
(
4
+
α
)
.
{\displaystyle {\textit {skewness}}={\frac {2(1-\alpha )}{(2+\alpha )}}{\sqrt {1+{\frac {2}{\alpha }}}},\qquad {\textit {kurtosis}}={\frac {3(2+\alpha )(2-\alpha +3\alpha ^{2})}{\alpha (3+\alpha )(4+\alpha )}}.}
The skewness can be negative, zero, or positive when
α
<
1
,
α
=
1
,
α
>
1
{\displaystyle \alpha <1,\alpha =1,\alpha >1}
. And if
α
=
1
{\displaystyle \alpha =1}
, with
β
=
1
{\displaystyle \beta =1}
,
x
{\displaystyle x}
follows the standard uniform distribution , and the measures becomes:
μ
=
1
2
,
σ
2
=
1
12
,
skewness
=
0
,
kurtosis
=
9
5
.
{\displaystyle \mu ={\frac {1}{2}},\qquad \sigma ^{2}={\frac {1}{12}},\qquad {\textit {skewness}}=0,\quad {\textit {kurtosis}}={\frac {9}{5}}.}
For the case of
β
=
2
{\displaystyle \beta =2}
,
x
{\displaystyle x}
follows the unit-Rayleigh distribution, and:
μ
r
′
=
E
(
X
r
)
=
1
−
π
2
α
r
e
r
2
/
(
4
α
)
e
r
f
c
(
r
2
α
)
,
r
=
1
,
2
,
…
,
{\displaystyle \mu '_{r}=\mathbb {E} (X^{r})=1-{\frac {\sqrt {\pi }}{2{\sqrt {\alpha }}}}\,r\,e^{r^{2}/(4\alpha )}\,\mathrm {erfc} \left({\frac {r}{2{\sqrt {\alpha }}}}\right),\qquad r=1,2,\ldots ,}
where
e
r
f
c
(
z
)
=
2
π
∫
z
∞
e
−
x
2
d
x
,
z
>
0
,
{\displaystyle \mathrm {erfc} (z)={\frac {2}{\sqrt {\pi }}}\int _{z}^{\infty }e^{-x^{2}}\,dx,\qquad z>0,}
Is the complementary error function . In this case, the measures of the distribution are:
μ
=
1
−
π
2
α
e
1
/
α
e
r
f
c
(
1
2
α
)
,
σ
2
=
1
−
π
α
e
1
/
α
e
r
f
c
(
1
α
)
−
[
1
−
π
2
α
e
1
/
α
e
r
f
c
(
1
2
α
)
]
2
.
{\displaystyle \mu =1-{\frac {\sqrt {\pi }}{2{\sqrt {\alpha }}}}\,e^{1/\alpha }\,\mathrm {erfc} \left({\frac {1}{2{\sqrt {\alpha }}}}\right),\sigma ^{2}=1-{\frac {\sqrt {\pi }}{\sqrt {\alpha }}}\,e^{1/\alpha }\,\mathrm {erfc} \left({\frac {1}{\sqrt {\alpha }}}\right)-\left[1-{\frac {\sqrt {\pi }}{2{\sqrt {\alpha }}}}\,e^{1/\alpha }\,\mathrm {erfc} \left({\frac {1}{2{\sqrt {\alpha }}}}\right)\right]^{2}.}
Applications
It was shown to outperform, against other distributions, like the Beta and Kumaraswamy distributions, in: maximum flood level, petroleum reservoirs, risk management cost effectiveness[ 2] , and recovery rate of CD34+cells data.
See also
References
^ Mazucheli, J.; Menezes, A. F. B.; Ghitany, M. E. (2018). "The Unit-Weibull Distribution And Associated Inference". Journal of Applied Probability and Statistics . 13 .
^ Mazucheli, J.; Menezes, A. F. B.; Fernandes, LB; de Oliveira, RP; Ghitany, ME (2019). "The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates". Journal of Applied Statistics . 47(6): 954-974. doi :10.1080/02664763.2019.1657813 .