In mathematics, the Volterra integral equations are a special type of integral equations.[1] They are divided into two groups referred to as the first and the second kind.
A linear Volterra equation of the first kind is
where f is a given function and x is an unknown function to be solved for. A linear Volterra equation of the second kind is
A linear Volterra integral equation is a convolution equation if
The function in the integral is called the kernel. Such equations can be analyzed and solved by means of Laplace transform techniques.
For a weakly singular kernel of the form with , Volterra integral equation of the first kind can conveniently be transformed into a classical Abel integral equation.
The Volterra integral equations were introduced by Vito Volterra and then studied by Traian Lalescu in his 1908 thesis, Sur les équations de Volterra, written under the direction of Émile Picard. In 1911, Lalescu wrote the first book ever on integral equations.
Conversion of Volterra equation of the first kind to the second kind
A linear Volterra equation of the first kind can always be reduced to a linear Volterra equation of the second kind, assuming that . Taking the derivative of the first kind Volterra equation gives us:Dividing through by yields:Defining and completes the transformation of the first kind equation into a linear Volterra equation of the second kind.
Numerical solution using trapezoidal rule
A standard method for computing the numerical solution of a linear Volterra equation of the second kind is the trapezoidal rule, which for equally-spaced subintervals is given by:Assuming equal spacing for the subintervals, the integral component of the Volterra equation may be approximated by:Defining , , and , we have the system of linear equations:This is equivalent to the matrix equation:For well-behaved kernels, the trapezoidal rule tends to work well.
Application: Ruin theory
One area where Volterra integral equations appear is in ruin theory, the study of the risk of insolvency in actuarial science. The objective is to quantify the probability of ruin , where is the initial surplus and is the time of ruin. In the classical model of ruin theory, the net cash position is a function of the initial surplus, premium income earned at rate , and outgoing claims :where is a Poisson process for the number of claims with intensity . Under these circumstances, the ruin probability may be represented by a Volterra integral equation of the form[6]:where is the survival function of the claims distribution.
^Polyanin, Andrei D.; Manzhirov, Alexander V. (2008). Handbook of Integral Equations (2nd ed.). Boca Raton, FL: Chapman and Hall/CRC. ISBN978-1584885078.
^Inaba, Hisashi (2017). "The Stable Population Model". Age-Structured Population Dynamics in Demography and Epidemiology. Singapore: Springer. pp. 1–74. doi:10.1007/978-981-10-0188-8_1. ISBN978-981-10-0187-1.
^Brunner, Hermann (2017). Volterra Integral Equations: An Introduction to Theory and Applications. Cambridge Monographs on Applied and Computational Mathematics. Cambridge, UK: Cambridge University Press. ISBN978-1107098725.
^Daddi-Moussa-Ider, A.; Vilfan, A.; Golestanian, R. (6 April 2022). "Diffusiophoretic propulsion of an isotropic active colloidal particle near a finite-sized disk embedded in a planar fluid–fluid interface". Journal of Fluid Mechanics. 940: A12. arXiv:2109.14437. doi:10.1017/jfm.2022.232.
^Daddi-Moussa-Ider, A.; Lisicki, M.; Löwen, H.; Menzel, A. M. (5 February 2020). "Dynamics of a microswimmer–microplatelet composite". Physics of Fluids. 32 (2): 021902. arXiv:2001.06646. doi:10.1063/1.5142054.
^"Lecture Notes on Risk Theory"(PDF). School of Mathematics, Statistics and Actuarial Science. University of Kent. February 20, 2010. pp. 17–22.
Further reading
Traian Lalescu, Introduction à la théorie des équations intégrales. Avec une préface de É. Picard, Paris: A. Hermann et Fils, 1912. VII + 152 pp.
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 19.2. Volterra Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN978-0-521-88068-8.