where is the polylogarithm and is the absolute value of the complex root (with positive imaginary part) of the cubic.
Symmetries
The Weeks manifold has symmetry group , the dihedral group of order 12. Quotients by this group and its subgroups can be used to characterize the manifold as a branched covering based on an orbifold. In particular, the quotient by the order-3 subgroup of the symmetry group has underlying set a 3-sphere and branch set a 52 knot. [2]
Related manifolds
The cusped hyperbolic 3-manifold obtained by (5, 1) Dehn surgery on the Whitehead link is the so-called sibling manifold, or sister, of the figure-eight knot complement. The figure eight knot's complement and its sibling have the smallest volume of any orientable, cusped hyperbolic 3-manifold. Thus the Weeks manifold can be obtained by hyperbolic Dehn surgery on one of the two smallest orientable cusped hyperbolic 3-manifolds.
Matveev, Sergei V.; Fomenko, Aanatoly T. (1988), "Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds", Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk, 43 (1): 5–22, Bibcode:1988RuMaS..43....3M, doi:10.1070/RM1988v043n01ABEH001554, MR0937017
Weeks, Jeffrey (1985), Hyperbolic structures on 3-manifolds, Ph.D. thesis, Princeton University