Module semi-simple![]() En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi-simple ou complètement réductible s'il est somme directe de sous-modules simples ou, ce qui est équivalent, si chacun de ses sous-modules possède un supplémentaire. Les propriétés des modules semi-simples sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des anneaux semi-simples et pour la théorie des représentations des groupes. DéfinitionsSoient A un anneau unitaire (non nécessairement commutatif) et M un A-module.
ExemplesEspaces vectorielsTout espace vectoriel est un module semi-simple (y compris un espace vectoriel sur un corps gauche), puisque tout sous-espace vectoriel possède un sous-espace supplémentaire – c'est une conséquence du théorème de la base incomplète. Anneaux semi-simplesUn anneau A est dit semi-simple s'il est semi-simple en tant que A-module. Dans ce cas, tous les A-modules seront semi-simples. Deux exemples historiques qui ont précédé la définition des modules semi-simples sont :
PropriétésDeux lemmes
En effet, soit S un sous-module de M. Soit P un sous-module de S, il admet un supplémentaire dans M ; l'intersection de ce supplémentaire et de S est un supplémentaire de P dans S, donc S est semi-simple. Soit maintenant M/N un quotient de M, il est isomorphe à un supplémentaire S de N, donc il est semi-simple d'après ce qui précède.
En effet, soient S un module semi-simple non nul et (par le lemme de Zorn) T un sous-module propre maximal. Soit P un supplémentaire de T. Ce sous-module P est simple, par maximalité de T. Caractérisations équivalentesLe théorème suivant fournit une équivalence entre diverses caractérisations des modules semi-simples. Théorème — Les propriétés suivantes sont équivalentes[2] :
On peut remarquer que d'après ce théorème,
Lemme de SchurLe lemme de Schur pour les groupes est un lemme technique explicitant la nature des morphismes entre représentations d'un groupe dont l'algèbre est semi-simple, mais se généralise en termes de modules :
Plus précisément, un morphisme non nul de M dans N (deux modules quelconques) est injectif dès que M est simple, et surjectif dès que N est simple[3]. La structure d'un morphisme de modules semi-simples s'en déduit : c'est une somme directe d'isomorphismes de sous-modules simples et de morphismes nuls. Décomposition canoniqueLa décomposition d'un module semi-simple M en sous-modules simples n'est pas unique : par exemple le groupe de Klein, qui possède trois sous-groupes d'ordre deux, est somme directe de deux quelconques de ces trois sous-groupes. Mais en choisissant l'une des décompositions de M et en regroupant, parmi les facteurs simples de cette somme directe, tous ceux qui sont isomorphes entre eux, on obtient une décomposition de M en somme directe de facteurs semi-simples NS (S désignant une classe d'isomorphisme de modules simples) dont on va montrer qu'ils sont, eux, canoniques. Pour cela, on définit la notion d'isotypie : nous dirons qu'un module semi-simple N est S-isotypique s'il vérifie l'une des trois propriétés équivalentes suivantes :
Cette définition permet de donner des sous-modules NS deux caractérisations qui dépendent uniquement de M et justifient leur nom de composantes isotypiques de M : pour toute classe d'isomorphisme T d'un sous-module simple P de M,
Notes et références
N. Bourbaki, Éléments de mathématique, Algèbre, chap. VIII Article connexe |
Portal di Ensiklopedia Dunia