アレクサンダーの定理数学において、アレクサンダーの定理(Alexander's theorem)は、すべての結び目、あるいは絡み目は閉じたブレイドとして表現することができるという定理である。定理の命名は、ジェームズ・アレクサンダー(J. W. Alexander)に因んでいる。 閉ブレイド(closed braid)は、最初はアレクサンダーにより結び目理論のツールとして考え出された。このことから結び目とブレイドに関する 2つの次のような基本的な問題を直接、定式化することができる。第一に、
アレクサンダーの定理 Alexander (1923) は、この問題への肯定的な答えを与える。結び目とブレイドの間の対応が1対1でないことは明らかであり(たとえば、共役ブレイドは同値な結び目をもたらす)、このことから第二の問題が自然に導かれる。
この問題へ答えるのが、マルコフの定理であり、任意の 2つのブレイドを関係つける「移動」(move)を与える。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia