エルミート標準形数学の線型代数学におけるエルミート標準形(エルミートひょうじゅんけい、英: Hermite normal form)とは、整数全体 Z についての行列の行階段形と同様の概念である。 非特異正方行列成分が整数であるような非特異正方行列 M = (mij) がエルミート標準形(Hermite normal form, HNF)であるとは、次を満たすときを言う:
一般的な行列より一般的に、成分が整数であるような m×n 行列がエルミート標準形(HNF)であるとは、
が存在し、M のはじめの r 列がゼロで、r + 1 ≤ j ≤ n に対し
が成立することを言う。 エルミート標準形の一意性成分が整数であるような m×n 行列 A が任意に与えられたとき、
を満たすような、整数成分のエルミート標準形の m×n 行列 H が一意に存在する。H の非ゼロの列により構成される行列のことを、A のエルミート標準形と呼ぶ。 例以下の行列 A のエルミート標準形が、H である。 例行列 A のエルミート標準形が、行列 H である。
ここで r=2; f(3)=1, f(4)=2, f(5)=3, f(6)=4 が得られる(f(j) は、列 j に含まれる最小の非ゼロ成分の行を与える) 関連項目注釈参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia