オメガ符号オメガ符号 (Elias omega coding) は、マサチューセッツ工科大学のピーター・イライアスによって開発された、整数の符号化を行うための符号である。 語頭を再帰的に符号化するため、再帰的イライアス符号とも呼ばれている。 符号化の手順1以上の整数値に対して
数値が 18 のときの例を示す。 まず末尾に 0 が書かれる。 0 続いて、18 をバイナリ表現した 10010 をその前に書き加える(空白は便宜上のもの。以下同様)。 10010 0 この 10010 の桁数が 5 桁なので、5-1=4 として、再帰処理する。4 のバイナリ表現 100 を前に書き加える。 100 10010 0 この 100 の桁数が 3 桁なので、 3-1=2 として、再帰処理する。2 のバイナリ表現 10 を前に書き加える。 10 100 10010 0 この 10 の桁数が 2 桁なので、 2-1=1 として、再帰処理する。そして、1 の場合は終了なので、結果として、 10 100 10010 0 が 18 をオメガ符号で符号化したときの符号語となる。 1 から 17 までの符号語を示す。 1 0 2 10 0 3 11 0 4 10 100 0 5 10 101 0 6 10 110 0 7 10 111 0 8 11 1000 0 9 11 1001 0 10 11 1010 0 11 11 1011 0 12 11 1100 0 13 11 1101 0 14 11 1110 0 15 11 1111 0 16 10 100 10000 0 17 10 100 10001 0
復号の手順
符号語 101100 を復号する例を示す。 まず N=1 として、先頭 1 記号を読み込む。値が 1 なので、続く N=1 記号を読み込んだ 10 をバイナリ符号とみなした 2 を、新たな N の値とする。すると、符号語の残りは、 1100 となる。先頭 1 記号を読み込む。値が 1 なので、続く N=2 記号を読み込んだ 110 をバイナリ符号とみなした 6 を、新たな N の値とする。すると、符号語の残りは、 0 となる。先頭 1 記号を読み込む。値が 0 なので、N=6 が求める整数値である。
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia