カタラン数初等組合せ論におけるカタラン数(カタランすう、英: Catalan number)は、ベルギーの数学者ウジェーヌ・カタランに因んで名付けられた自然数のクラスである。n番目のカタラン数 Cn は で表される[1]。 n = 0, 1, 2, … に対してカタラン数は
となる カタラン数の意味カタラン数は様々な意味付けがなされている。以下に例を示す。
![]() Cn は、n個の分岐を持つ(n + 1枚の葉を持つ)二分木の総数である。上記の図は C3 = 5 の場合に対応している。 ![]() 上記の図は C4 = 14 の場合に対応している。
→詳細は「多角形の三角形分割」を参照
![]()
性質カタラン数は と表せる。 漸化式では となる。 母関数は となる。 n が十分大きいとき、次の式でカタラン数を近似することができる(なおこれはウォリスの公式から証明できる): n = 2k − 1(メルセンヌ数)のときのみ Cn は奇数となり、それ以外の n における Cn は偶数となる。 脚注
関連項目外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia