キーペルト双曲線
![]() Gは重心、Oは垂心である。 三角形におけるキーペルト双曲線(キーペルトそうきょくせん、Kiepert Hyperbola)とは、三角形の3つの頂点と重心と垂心を通る双曲線である。また外接円錐曲線の一種である。名前はドイツの数学者であるルードヴィヒ・キーペルトに由来している。 キーペルト点と存在証明![]() キーペルト点は、以下の手順で作図される点である。
キーペルト点の軌跡がキーペルト双曲線となる。 3線が1点で交わることは以下のように証明できる。
性質上述の式からキーペルト点の重心座標は以下のようになる。
ここで、a = BC, b = CA, c = AB である。 キーペルト双曲線の重心座標による式は以下のようになる。
漸近線は、ブロカール軸と外接円の交点から求められるシムソン線であり、その交点X(115)は重心座標によって以下のように表される[1]。
この点は九点円上にある。 三角形が二等辺三角形のとき、この双曲線は2本の漸近線に退化する。正三角形のとき、上述の重心座標の式の左辺は0になるため定義できない。実際 θ=-60° のとき、任意の点 P に対して AxP ByP CzP の3組は同一直線上にある。 ブロカール軸上の点の等角共役の軌跡はキーペルト双曲線である。 線上の主な点以下の点はキーペルト双曲線上にある。 脚注
関連項目外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia