ギーゼキング多様体数学におけるギーゼキング多様体(ギーゼキングたようたい、英: Gieseking manifold)は、体積が有限の尖った双曲3次元多様体(cusped hyperbolic 3-manifold)である。向き付け不可能であり、体積はおよそ 1.01494161 で、コンパクトでない双曲多様体の中では最小となっている。Gieseking (1912) によって発見された。 ギーゼキング多様体は、四面体から頂点を取り除き、アフィン線型写像を使って各面のペアを貼り合わせることで構成できる。まず各頂点に 0, 1, 2, 3 と番号を付ける。頂点 0,1,2 からなる面を、頂点 3,1,0 からなる面に、その順番で貼り合わせる。また頂点 0,2,3 の面を、頂点 3,2,1 の面に、その順番で貼り合わせる。 ギーゼキング多様体の双曲構造において、この理想的四面体は、エプステイン=ペナーの標準多面体分解(canonical polyhedral decomposition)である。さらに、その面によって作られる角度は である。その三角形分割は一つの四面体と二つの面、一つの辺を持ち、頂点は持たない。したがって、元の四面体のすべての辺はともに貼り合わされることになる。 ギーゼキング多様体は、8の字結び目補空間への二重被覆位相同型を持つ。そこにあるコンパクト多様体は境界としてクラインの壺を持つ。ギーゼキング多様体の第一ホモロジー群は、整数である。 ギーゼキング多様体は、円上のファイバー束で、ファイバーと 1 点穴あきトーラス、およびモノドロミーなアーノルドの猫写像を持つものである。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia