クラメル・カスティヨンの問題![]() クラメル・カスティヨンの問題(クラメル・カスティヨンのもんだい、英: Cramer–Castillon problem)は、1742年にスイスの数学者ガブリエル・クラメールが提起し、1776年にイタリアの数学者ジャン・ド・カスティヨンが肯定的に解決した、幾何学の問題[1][2][3][4]。単に、カスティヨンの問題とも言われる[5][6][7]。 平面上に、円ZとZ上にない3点A,B,Cを作る。クラメル・カスティヨンの問題は、3辺(またはその延長)がそれぞれA,B,Cを通り、Zに内接する三角形をいつでも構築することは可能であるかという問題である。 何世紀も前に、アレキサンドリアのパップスは3点が共線である場合を証明していた。しかし、一般の位置にある3点における問題は非常に高難易度であると評価を得ていた[8]。カスティヨンが幾何学的な構築を証明した後、 ラグランジュがカスティヨンの解法よりも簡単な代数的解法を発見した[9]。また、マルファッティも独自に解法を発見している[5]。ペテルゼン(Petersen)やジョルダーノ(Giordano di oltaiano,1788年)、19世紀初期にラザール・カルノーなどがn点、n角形への一般化を示した[10][11]。ジェルゴンヌ(1811)やポンスレ(1817)は円を円錐曲線へ一般化した。他、Seydewitz(1844)などがこの問題を研究している。 出典
参考文献
外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia