イングランドに帰国した後の1844年にシルベスターは Equity and Law Life Assurance Society に雇われ、現実的なモデルを開発することに成功し、(法学の学位が必要な)CEO職を事実上務めることになった。その結果、法学を学ぶ際に、同じく法律を勉強していたイギリス数学者のアーサー・ケイリーと出会った[6]。1855年、王立陸軍士官学校の数学教授に指名され、1869年の(55歳における)定年退職まで働いた。 士官学校は最初シルベスターに年金満額を払うことを拒んだが、シルベスターは
The Times 誌にこの件について手紙を送り、長い世論の論争の末にようやく譲歩させた。
シルベスターが人生の中で熱中したもののひとつに詩がある。フランス語、ドイツ語、イタリア語、ラテン語、ギリシャ語の原典を読み、自身で翻訳した。彼の数学の論文の多くには古典派詩の説明つき引用が添付されている。早期退職に伴って、シルベスターは The Laws of Verse なる書の中で、詩の韻律に関する法則を明文化する事を試みた[7]。
同年、クリスティン・ラッド=フランクリン(英語版)がシルベスターの助けを借りてジョンズ・ホプキンズ大学に入学した。ラッドは早期に Educational Times 誌に投稿した作品で記憶されている[11]。ラッドのフェローシップへの申し込みの署名は" C. Ladd"で、大学はラッドが女性であることを知らずに彼女を雇った[12] 。大学がラッドの性別に気が付くと、大学の委員会は雇用を取り消そうとしたが、シルベスターはラッドを生徒にしようと考え、彼女もそれを受け入れた[12]。ラッドはその3年後に大学のフェローシップを受け取ったが、大学の評議員は前例を作ってしまうことを恐れて、回覧に他のフェローと一緒に彼女の名を載せることを許可しなかった[12] 。更に彼女が在学し続ける事への不和で1人の評議員が辞任を余儀なくされた[12]。
^ abFeuer, Lewis Samuel (1984). “America's First Jewish Professor: James Joseph Sylvester at the University of Virginia”. American Jewish Archives36 (2): 152–201.
^Cadwallader, J. V.; Cadwallader, T.C. (1990). “Christine Ladd-Franklin (1847-1930)”. In O'Connell, A. N.; Russo, N. F.. Women in Psychology: A Bio-bibliographic Sourcebook. New York, NY: Greenwood Press. pp. 220–225
^Sylvester, J.J. (November 1850). “Additions to the articles in the September Number of this Journal "On a new Class of Theorem" and "On Pascal's Theorem"”. London, Edinburgh, and Dublin Philosophical Magazine37: 363–369. doi:10.1080/14786445008646629.
J. J. Sylvester (7 February 1878) "Chemistry and algebra,"Nature, 17 : 284. From page 284: "Every invariant and covariant thus becomes expressible by a graph precisely identical with a Kekuléan diagram or chemicograph."
^J. J. Sylvester (1851) "On a remarkable discovery in the theory of canonical forms and of hyperdeterminants," Philosophical Magazine, 4th series, 2 : 391–410; シルベスターは、"discriminant"と言う語を406頁で作っている。
^J. J. Sylvester (1879) "On certain ternary cubic-form equations," American Journal of Mathematics, 2 : 357–393; シルベスターは"totient"という語を 361頁で使っている。: "(the so-called Φ function of any number I shall here and hereafter designate as its τ function and call its Totient)"
^Sylvester, James Joseph (1851). “On the relation between the minor determinants of linearly equivalent quadratic functions”. Philosophical Magazine1: 295–305.
^C.G.J. Jacobi, "De Formatione et Proprietatibus Determinantium", Journal für die reine und angewandte Mathematik, 22, 285-318 (1841)
Grattan-Guinness, I. (2001), “The contributions of J. J. Sylvester, F.R.S., to mechanics and mathematical physics”, Notes and Records of the Royal Society of London55 (2): 253–265, doi:10.1098/rsnr.2001.0142, MR1840760.