チェビシェフ方程式
チェビシェフ方程式(チェビシェフほうていしき、英語: Chebyshev equation)は、p を実定数とする二階線型常微分方程式 のことである。方程式の名称は、ロシアの数学者パフヌティ・チェビシェフにちなむ。 この方程式の解の全体は、冪級数 で、その各係数が漸化式 によって与えられるものの全体として得られる。上述の級数は漸化式に対してダランベールの収束判定法を用いることにより、x ∈ [−1, 1] において収束することが示される。この漸化式は勝手な a0 および a1 を初期値にとれる。それゆえ、二階方程式から生じる二次元の解空間が上記の冪級数解全体として得られるのである。通常は
および
を選び、一般解はこの2つの任意の線型結合で与えられる。 p が整数ならば、2つの関数のいずれか一方はその和が有限個の項で終わる(p が偶数なら F の、p が奇数なら G の項がたかだか有限個である)。このとき関数はp-次多項式(もちろん全域で収束する)となる。また、この多項式はチェビシェフ多項式に比例する。すなわち、
この記事は、クリエイティブ・コモンズ・ライセンス 表示-継承 3.0 非移植のもと提供されているオンライン数学辞典『PlanetMath』の項目Chebyshev equationの本文を含む |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia