ハイゼンベルクの運動方程式ハイゼンベルクの運動方程式(英: Heisenberg equation of motion)は、量子力学をハイゼンベルク描像によって記述する場合の、オブザーバブルの時間発展についての基礎方程式である。 今日、この式に対してハイゼンベルクの名前が用いられることが多いが、歴史的にはこの方程式を与えたのはハイゼンベルクではなく1925年のボルンとヨルダンであり、また同年にディラックも独立にこの式を提出した[1][2][3]。この方程式がシュレーディンガー描像におけるシュレーディンガー方程式と数学的に等価であることは、エルヴィン・シュレーディンガーとポール・ディラックによって独立に証明された。 ハイゼンベルクの運動方程式ハイゼンベルク描像での物理量(オブザーバブル) 、ハミルトニアンによる以下の式をハイゼンベルクの運動方程式と言う。 この方程式はハミルトン力学での物理量の時間発展をあらわす式(ポアソンの括弧式を使ったもの)に類似している。 シュレーディンガー描像でも時間依存する物理量 が含まれる場合、ハイゼンベルクの運動方程式は以下のように修正される。 ここで はシュレーディンガー描像での物理量 の演算子、は時間発展演算子である。 脚注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia