ファン・デル・ポール振動子![]() ファン・デル・ポール振動子とは、非線形の減衰を受けた非保存系の振動子である。支配方程式は、ファン・デル・ポール方程式と呼ばれる次の式である。
x は座標で、時間 t の関数となっている。μは非線形の減衰の強さを表すパラメーターである。 リエナールの定理から、リミットサイクルの存在を示すことができる。 歴史![]() ファン・デル・ポール振動子は、オランダの電気工学者で物理学者でもあるバルタザル・ファン・デル・ポールにより提案[1]された。彼は、真空管を使用した電気回路内に安定な振動を発見し、これを緩和振動と呼んだ[2]。この振動は現在リミットサイクルとして知られており、この回路をリミットサイクルの近傍で動作させると回路は引き込み現象をおこす。ファン・デル・ポルと同僚のvan der Markは、1927年のネイチャー9月号[3]にて、特定の動作周波数で不規則なノイズが聞こえると報告した。この不規則なノイズは常に引き込み周波数の近傍で聞かれた。これは決定論的カオスの最初の発見例のひとつである。[4] ファン・デル・ポル方程式は、物理学と生物学の分野で長い間使用されている。例えば、生物学では Fitzhugh[5]と南雲[6] は方程式を拡張し、神経細胞の活動電位に関するフィッツフュー-南雲モデルを構成した。また、地震学において断層のモデル化にも使用されている。[7] 関連項目脚注
外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia