フェイェールの定理数学におけるフェイェールの定理(フェイェールのていり、英: Fejér's theorem)とは、ハンガリーの数学者リポート・フェイェールの名にちなむ定理。f:R → C が周期 2π の連続函数であるなら、そのフーリエ級数の部分和の列 (sn) のチェザロ平均の列 (σn) は、[-π,π] 上一様に f に収束する。 (sn) を具体的に書くと、 となる。ただし である。また (σn) は であり、Fn は第 n 次のフェイェール核を表す。 より一般的な形式において、この定理は必ずしも連続でない函数に対しても応用されている (Zygmund 1968, Theorem III.3.4)。f は L1(-π,π) に属するものと仮定する。f(x) の x0 における左極限および右極限 f(x0±0) が存在するか、いずれの極限も同符号の無限大であるなら、次が成り立つ: チェザロ平均の存在あるいは無限大への発散も、この関係式は意味している。マルツェル・リースのある定理によると、フェイエールの定理は (C, 1) 平均 σn がフーリエ級数の (C, α) 平均 に変えられても、同様に成立する。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia