フレーム素材 (自転車)
フレーム素材(フレームそざい)では、自転車のフレームに使われる素材を記す。フレームの形状についてはフレーム (自転車)を参照。 自転車のフレームに適切な素材はスチール、アルミニウム合金、チタン、マグネシウムなどの金属系素材からCFRPなどの繊維強化合成樹脂系素材、そして処理が適切ならば木材から竹などの天然素材に至るまで範囲が広い。 素材の種類スチール(鋼)鉄を主成分とした合金で、炭素を0.04パーセントから2パーセント程度加えたもの。使用目的や予算などにより多種多様の鋼が用いられるが、錆びにくい鋼として知られるステンレス鋼はコストが普通の鋼の5倍以上の上に加工面にも難があることから、コスト重視での選択が多い鋼のメリットを阻害することからほぼ用いられない。 なお、使用目的や予算などにより、クロム、モリブデン、ニッケル、マンガンなどが加えられた以下の鋼が用いられる。
スチールは自転車のフレームとしては長い歴史を持つ素材で、実用車を始めロードバイク、マウンテンバイク、シクロクロス、BMX など、ほぼ全ての種類の自転車に用いられる。重量の点を除けば、強度や振動吸収性など、自転車フレームとしては最も理想的な素材の一つである。特に実用車など強度や耐久性が重視される車両においては、様々な素材が出てきた現在においても、最もポピュラーな存在であり続けている。ただし、競技用フレームとしての地位は軽量なカーボンフレームに完全に奪われ、レギュレーションで特に素材の規定がある競技(日本の競輪など)を除き使用される事はほとんどなくなった。
炭素繊維強化プラスチック→「炭素繊維強化プラスチック」も参照
炭素繊維を熱硬化性樹脂に浸し、加熱して固めて作られる。単に「カーボン(フレーム)」と呼ばれることが多い。型でフレームの大部分ごと、あるいは全体を一体成形するものが普及してきた。CFRPパイプをラグ(lug = 管継手)で接いだタイプもある。史上初のカーボンフレームは1986年にKESTRELが発売した「KESTREL4000」。つなぎ目のないカーボンモノコック構造にインナーケーブル内蔵のエアロフォルム。 モノコックタイプのフレームにはもはやフレーム構造ではないものもある(1990年代ごろのTTバイクなど)が便宜上フレーム呼ばれる。逆にダイアモンドタイプの概観でモノコックを謳うものもある(外皮の部分ごとに応力分布を計算し、コアを入れるなど工夫を凝らしている)。カーボンモノコックの製品はメーカーの技術により性能が大きく左右する。フレーム構造に比べて解析が困難であることに加え、炭素繊維の持つ特質――引張の力には強いが剪断の力には弱い、剛性(ヤング率)の高いものほど圧縮に弱いなど――により、繊維の種類や方向を綿密に設計しなければならないためである。そのため十分な性能を得るには有限要素法等の強度解析や独特のノウハウが必要とされる。最近はアルミやスチールのフレーム用チューブを供給していた鉄鋼メーカーが素材としてカーボンチューブやカーボンラグを供給している。これにより、現在では小規模なメーカーでも容易にカーボンフレームを作成することが出来るようになった。 近年ではカーボンの持つ2つの特性、すなわち剛性の高さと衝撃吸収性のそれぞれを前面に出した「レーシングモデル」「コンフォートモデル」に二分され、それぞれ発展を続けている。
アルミニウム合金現在、最もポピュラーな素材といえる。軽量かつ堅牢で、錆びにくいうえに安価であるため、初心者から上級者まで幅広く使われており、用途もほとんどあらゆる種類の自転車に使われている。素材そのものの弾性率では鉄の約1/3、チタンの約1/2とかなり軟らかいアルミであるが、密度がやはり鉄の約1/3、チタンの約1/2と軽いため、フレームを構成するチューブを大径化して剛性を上げても鉄などと比較して軽量なフレームが設計しやすい。しかしながらアルミニウム合金には疲労強度の限界点が存在しないため、負荷をかければ必ず金属疲労が進行する(スチールやチタンでは限界点より小さな負荷であれば金属疲労が進行しない)。このためスチールやチタンと比較するとフレームの寿命が短い傾向にある。 アルミニウム合金を用いたロードバイクフレームはフランスのVITUS(ヴィチュー)によって世界で最初に量産された。1970年代後半のことである。ラグを利用した接着工法によるこのフレーム979は当時画期的なモデルとして高く評価された。 現在使用されているアルミ合金は、大きく6000系と7000系に分けられる。なお、フレーム以外のハンドルバーやシートピラーには2000系のアルミ合金も使用される。
またメーカーによってはスカンジウムなどを添加した独自の特殊な合金を採用しているところもある。 ショック吸収性が低いアルミニウムの欠点を補うため、シートステーまたはリア三角のみをカーボン素材としたカーボンバックモデルも一般化してきているほか、チューブやフレームデザインの改善により剛性バランスを調整したフレームが主流になりつつある。
チタン丈夫で長持ちかつ、軽量な素材だが、非常に活性の高い素材であることから溶接などの加工に手間がかかりどうしても高価になってしまう。この素材を取り扱うメーカーは主に少数で高級フレームを製作するところに留まっている。日本国内ではパナソニック サイクルテックやティグ(TIG)などがチタンフレームを販売している。チタン素材は異種金属と組み合わせると電位差による腐食で焼きつきを起こしやすいので、組み付けの際には接触する部分に焼き付き防止剤を塗るなどユーザー側で気をつけなければならない。 最近は、カーボン・アルミ素材の性能向上や、カーボンバックなどのハイブリッドフレームに押され、市場としては縮小傾向にあるが、独特な乗り味(アルミフレームとクロモリフレームの中間と言われる)と独特の光沢などが一定の支持を受け続けている。
マグネシウム純度の高いマグネシウムは非常に活性が高く酸化しやすい(空気中で加熱すると炎を上げて燃焼するほど)ため加工が難しかったが、技術の進歩により最近になって実用化された素材である。実用金属の中で最も比強度が高いので、うまく利用できればアルミやチタンを凌ぐフレーム素材になる。しかし、研究開発はまだ途上であり、アルミ合金にマグネシウムを添加した程度の利用に留まる。この素材を用いたフレームは新家工業のマディフォックスやピナレロ のDOGMAが代表的である。他に日本の「ブリヂストンサイクル (ANCHOR)」、台湾の「メリダ・インダストリー」がある。 素材特性としては内部損失が大きいことがあげられる。つまり、スチールやチタンのような反発力のある振動吸収ではなく、振動のエネルギーをフレームが減衰させてしまう(振動のエネルギーは熱に変わる)特徴がある。
木材木材は衝撃吸収性が良く、初期のロードバイクでは木材がリムの素材に使われていた。『木リム』である。このような観点から木材を水蒸気で曲げ加工してフレームにしたり、樹脂素材で固めてフレームとして作製するビルダーも存在する。ただし、形成作業が一貫して手作業である事、素材の本質が必ずしも均一でない事から大量生産には向かない。また需要からしてあまりなく、あくまでもマニア向け、またはインテリアのオブジェとして使われる事が多い。 竹竹は釣り竿の材料となっているように物理的な力に対しての反発力があり、フレーム素材として適切な素材として成り立つ要素を持っており、樹脂で固めた竹製フレームが存在する。ただこれも木材と同様、少数の需要で成り立つ少数生産である。 →詳細は「竹製自転車」を参照
素材の形状![]() 過去のフレームは、単純に細い鉄パイプを組み合わせただけのような形状をしていた。しかし、現在では、軽量化や強度の向上のために、様々な工夫がなされている(注:下にあげた技術に対する呼称はメーカーごとに異なる)。主に金属のチューブを前提としたものを記す。 バテッドチューブとくに金属系チューブに多い加工。自転車を構成している前三角のパイプにかかるねじり及び横方向の応力はパイプを結合している端部が最も大きくそれに対して、中央部にかかる力は比較的小さい。この現象を利用し、パイプの中央部の肉薄を薄く、両端の(または加圧側だけの)肉薄を厚くしたパイプを使用して作られたフレームがバテッド(段付き)フレームである。強度を落とさずに、効果的な軽量化が可能である。あらゆる素材のフレームに利用されている。両端を厚く、中央は薄くしたダブルバテッド、片方の端だけ厚く、中間は普通、力がかからない側は薄くしたトリプルバテッドがある。自転車のトラス構造の後三角は前三角とは異なり中央部に最も応力がかかるため、両端部が細く、中央部が太いチューブが用いられることもある。 メガチュービングアルミフレームが普及する前の自転車フレームはスチールが主であり、アルミフレームも当初はパイプ外径などで既存のスチールパイプの寸法を模倣していた、ところが比重が軽いアルミニウムの長所をより有効に活用するため、パイプの径をクロモリよりも太くし肉厚をそれまでよりも薄くさせる事によって剛性をあげ、より軽量にしたのがメガチュービングである。現在、ほぼ全てのアルミフレームが採用している他、カーボンフレームでもほぼ全てがメガチュービングを採用している。クロモリにおいてもダウンチューブにオーバーサイズパイプと言われる外径の若干太いパイプを同様の理由で用いていた時期もあったが、実質レース用フレームとして使われなくなってからその必要性を失ったこともあり最近ではあまり見かけない。 偏平チューブ、トライアングルチューブ偏平チューブはパイプの断面を楕円形に、トライアングルチューブは断面を三角形に近くしたもの。どちらもメガチュービングの発展型である。偏平チューブはパイプを従来の真円から、力のかかる方向や、空気抵抗を避けるために楕円形に変形させることにより、フレームの性能をあげるものである。トライアングルチューブもパイプに角を作る事により、剛性を調整するものである。 接合方法一体形成による構造が実用化されるまでは、自転車の主構造はパイプを組み合わせたものであった、概ね以下の方法で結合され、フレームとして作られていた。 ラグ接合法![]() 主として鉄系素材のパイプをロウ付け接合する為に用いる嵌合(カンゴウ)を用いた接合法である、継ぎ手は『ラグ』と呼ばれ、鋼管を素材にバルジ成形により国内で全て生産されていた。しかし多くの自転車メーカーが中国からの安価な完成自転車の輸入に切り換わって行った為に、国産製フレームの生産が激減してラグの需要も少なくなってしまった。その為に国内フレームはフレームビルダーの少量生産が主流になり、その需要に合わせて対応ができる精密鋳造(ロストワックス)で製造される輸入ラグが主流になった。しかしラグの生産技術として使われたバルジ成形は日本で発明された技術として自動車産業初め広くパイプ塑性加工技術の一つとして有用されている。またロウ付けによるラグ接合法は世界の自転車フレーム生産の歴史の中で量産効果、強度、耐久性など証明されており需要が少ないがバルジ成形製ラグの国内生産は継続されている。 →「ラグ接合フレーム構成」も参照
ラグレス上述のラグを用いず、各チューブをロー付けする事によって接合する方法。 フィレット溶接フィレット溶接とは、ラグレスの補強目的で鉄板をパイプに巻き付けてカットラグに見える様にしてトップ・ダウンチューブとヘットチューブの境目を溶接する方法。効果としてフレーム応力を分散させる事が出来るため丈夫であり、スムーズな外観が特徴である。 TIG溶接TIG溶接は、アーク溶接の一種で、タングステンを電極に用い溶接部を不活性ガスで覆いながら溶接する。精密な溶接が可能。密着した母材同士を直接溶接することも、溶加材を加えることも可能。現在では金属フレームの一般的な接合方法である。 接着主にCFRP、木材、竹を使った素材で使われる。 主なフレーム素材メーカー
|
Portal di Ensiklopedia Dunia