ペンローズの三角形![]() ペンローズの三角形(ペンローズのさんかっけい)は不可能図形の一種。 概要![]() 1934年、スウェーデンの芸術家オスカー・ロイテルスバルトが考案した。1950年代にライオネル・ペンローズとその息子のロジャー・ペンローズがそれとは独立に「不可能性の最も純粋な形」として考案し、一般に広めた。芸術家マウリッツ・エッシャーが不可能図形を多く扱ったが、その発想の一部となった。 固体の物体であり、3本の真っ直ぐな四角柱がそれぞれ直角に組み合わされていながら、全体で三角形を形成している。これを通常のユークリッド空間における3次元の物体として具現化させることはできず、ある種の3次元多様体でのみ存在できる[1]。通常の3次元空間では、ある角度から見たときだけペンローズの三角形のように見える物体を作ることは可能である。ペンローズの三角形という言葉は、2次元平面にそれを描いたものと3次元のありえない立体の両方を指す。 エッシャーのリトグラフ『滝』では、2つのペンローズの三角形を組み合わせたようなジグザグの水路を描いており、水平な水路のようでいて高低差が生じているという絵になっている。結果として、一番高く見えるところから水路の始点に滝が流れ落ち、途中で水車を回している。エッシャーは水路の水が蒸発していくため、水車を回し続けるためには水を時々補給する必要があると指摘している。 ペンローズの三角形の面を追いかけていくと、4重のメビウスの帯になっていることがわかる[2]。 他のペンローズの多角形ペンローズの三角形から似たようなものを構築可能で、他の正多角形からペンローズの正多角形を作ることができる。しかし、角が増えるに従って単に反っているかねじれているように見えてくる。 脚注
外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia