メネラウスの定理
メネラウスの定理(めねらうすのていり、英: Menelaus' theorem)とは、幾何学の定理の1つである。アレクサンドリアのメネラウスにちなんで名付けられた。 定理![]() 任意の直線lと三角形ABCにおいて、直線lとBC、CA、ABの交点をそれぞれD、E、Fとする。この時、次の等式が成立する。 なお、直線lは、三角形と共有点を持っても持たなくても良い。AからBに行くときにFを通り、BからCに行くときにDを通り、CからAに行くときにEを通る。つまり、A、ABとlの交点、B、BCとlの交点、C、CAとlの交点という順番でたどり、通る辺を順番に分数にすればよい。 証明の方針証明法はさまざまあるが、ここでは代表的な方針を述べる。 証明1ABに平行にCから伸ばした線とDEFとの交点をKとする。相似から が成り立つ。左式のCKを右式に代入、もしくは逆に右式を左式に代入し、整理すれば定理が導かれる。 証明2ΔABCの各頂点から直線lに垂線をおろす。すると、3組の相似な直角三角形が現れるので、その相似比を考えればよい。 証明3直線ADと直線BEの交点をGとすると △AED≠0より 逆メネラウスの定理は逆も成り立つ。すなわち、任意の三角形ABCに対して、直線AB、BC、CA上に点F、D、Eをとり、D、E、Fのうち三角形ABCの辺上にある点が0個あるいは2個の時、 が成り立つならば、3点D、E、Fは、1直線上にある。 関連項目外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia