丸山良寛の定理![]() 初等幾何学および和算における丸山良寛の定理(まるやまりょうかんのていり)は、円に内接する四角形(共円四角形)の中にできる特定の三角形の内心が長方形を描くことを述べる。名称は、藤田嘉言編『続神壁算法』において出羽国の鶴岡山王神社に丸山良玄の門人・丸山鉄五郎良寛の名で奉納された算額として紹介されている[1]ことに由来する。 ヨーロッパへは三上義夫が(中国人数学者より伝え聞いたとする任意の共円多角形に対する一般化された形で)定理を紹介した[1]ため、Japanese theorem(日本(人)の定理)の名で知られる[注釈 1][注釈 3]。 内容
この定理を拡張して容易に共円多角形に対する定理を示すことができる。丸山良寛の定理の証明には、四つの内心によってできる四角形の頂点に接し、辺がもとの共円四角形の対角線に平行な平行四辺形を構成すればよい。この構成でできる平行四辺形が菱形となること(あるいは同じことだが、各対角線に接する二つの内接円の半径の和が対角線に依らず等しいこと)が示せる。このように共円四辺形に対する場合が示されたならば、一般の共円多角形に対する場合の証明は多角形の三角形分割の集合に関する帰納法で得られる。 注注釈出典参考文献
関連項目外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia