公倍数公倍数(こうばいすう)とは、2つ以上の整数に共通な倍数。例えば、との公倍数は-18,-12,-6,0,6,12,18などである。ただし、算数では、倍数にを含めないので、公倍数にもを含めない。 公倍数のうち、正で最小のものを最小公倍数という。上の例でいうと、との最小公倍数はである。 与えられた2つ(以上)の数に対し、それら全てを掛け合わせたものは、それらの数の公倍数になるが、最小公倍数になるとは限らない。例えば、との最小公倍数はであるが、である。 ある2つ以上の整数の公倍数は無限に存在する。例えば、との公倍数は-30,-15,0,15,30となり、15の倍数になっていることがわかる。(ある与えられた数の倍数は無限に存在する。) 一般化二つの整数の公倍数とは、の倍数全体の集合は整数全体を動く、の倍数全体の集合は整数全体を動くの集合の共通部分に属する整数のことである。 はある整数を用いては整数全体を動くの形に表すことができる。このようなは正と負の2つが存在し、正の方をとの最小公倍数という。これらの概念はが正の整数のとき、既に定義したものと一致する。 この定義に現れる「整数」を一般の「単項イデアル整域の元」に取り替えても、全く同様の概念として公倍元・最小公倍元を定義できる。一般の環では、公倍元は定義できるが最小公倍元の存在は必ずしもいえない。 関連記事 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia