The permutohedron is a zonotope; a translated copy of the permutohedron can be generated as the Minkowski sum of the n(n − 1)/2 line segments that connect the pairs of the standard basis vectors .[6]
The vertices and edges of the permutohedron are isomorphic to one of the Cayley graphs of the symmetric group, namely the one generated by the transpositions that swap consecutive elements. The vertices of the Cayley graph are the inverse permutations of those in the permutohedron.[7] The image on the right shows the Cayley graph of S4. Its edge colors represent the 3 generating transpositions: (1, 2), (2, 3), (3, 4)
Tesselation of space by permutohedra of orders 3 and 4
The permutohedron of order n lies entirely in the (n − 1)-dimensional hyperplane consisting of all points whose coordinates sum to the number
1 + 2 + … + n = n(n + 1)/2.
Moreover, this hyperplane can be tiled by infinitely many translated copies of the permutohedron. Each of them differs from the basic permutohedron by an element of a certain (n − 1)-dimensional lattice, which consists of the n-tuples of integers that sum to zero and whose residues (modulo n) are all equal:
x1 + x2 + … + xn = 0, x1 ≡ x2 ≡ … ≡ xn (mod n).
This is the lattice , the dual lattice of the root lattice . In other words, the permutohedron is the Voronoi cell for . Accordingly, this lattice is sometimes called the permutohedral lattice.[8]
Thus, the permutohedron of order 4 shown above tiles the 3-dimensional space by translation. Here the 3-dimensional space is the affine subspace of the 4-dimensional space R4 with coordinates x, y, z, w that consists of the 4-tuples of real numbers whose sum is 10,
x + y + z + w = 10.
One easily checks that for each of the following four vectors,
(1,1,1,−3), (1,1,−3,1), (1,−3,1,1) and (−3,1,1,1),
the sum of the coordinates is zero and all coordinates are congruent to 1 (mod 4). Any three of these vectors generate the translation lattice.
The tessellations formed in this way from the order-2, order-3, and order-4 permutohedra, respectively, are the apeirogon, the regular hexagonal tiling, and the bitruncated cubic honeycomb. The dual tessellations contain all simplex facets, although they are not regular polytopes beyond order-3.
Ziegler, Günter M. (1995), Lectures on Polytopes, Springer-Verlag, Graduate Texts in Mathematics 152.
Further reading
Le Conte de Poly-Barbut, Cl. (1990), “Le diagramme du treillis permutoèdre est intersection des diagrammes de deux produits directs d'ordres totaux”, Mathématiques, Informatique et Sciences Humaines112: 49–53.