半対称グラフ![]() 数学のグラフ理論の分野における半対称グラフ(はんたいしょうグラフ、英: semi-symmetric graph)とは、辺推移的かつ正則であるが、頂点推移的でない無向グラフのことを言う。 言い換えると、グラフが半対称的であるとは、各頂点に接続する辺の数が等しく、各辺を別のどの辺へも推移することの出来る対称性が存在するが、ある頂点のペアに対しては、対称性によってそれらを別のものへと推移することが出来ないことを言う。半対称グラフは2部グラフであり、その自己同型群は bipartition の各二頂点の集合上で推移的に作用する。右上図において、緑の頂点はどのような自己同型によっても赤い頂点へ写されることはない。 半対称グラフは、1967年、最小の半対称グラフである 20 頂点のフォークマングラフを発見したジョン・フォークマンによって初めて研究された[1] 。 最小の立方体半対称グラフは、54 頂点のグレイグラフである。そのグラフが半対称であることは Bouwer (1968) によって初めて確認された。また、最小の立方体半対称グラフであることは、ドラガン・マルシッチとアレクサンダー・マルニッチによって証明された[2]。 立方体半対称グラフについては、768 頂点のものまでが知られている。コンダー、マルニッチ、マルシッチおよびポトチェニクによれば、グレイグラフに続く最小の四つの立方体半対称グラフには、110 頂点のイオフィノヴァ-イヴァノフグラフ、112 頂点のリュブリャナグラフ[3]、120 頂点の内周 8 のグラフ、およびトゥッテ-12ケージがある[4]。 参考文献
外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia