同種 (数学)
数学で、同種写像(isogeny)とは、2つのアーベル多様体(例えば楕円曲線)の間の代数群の射で、全射でしかも有限の核を持っているものを言う。 群がアーベル多様体であるとき、全射でかつ有限のファイバーを持つ基礎となる代数多様体の任意の射 f : A → B は、f(1A) = 1B であれば自動的に同種写像である。従って、そのような同種写像 f は、f が定義されている任意の体 k に対して、k の値となる A と B の点の群の間の群準同型をもたらす。 語源ギリシャ語の (iso-) とラテン語 (genus) から、同種写像(isogeny)は「同じ起源を持つ」の意味を持ち、元となるアーベル多様体の恒等元を対象となるアーベル多様体の恒等元へ写すという幾何学的事実がある。 楕円曲線の場合![]() 楕円曲線に対し、同種の意味は次のように定式化することができる。 E1 と E2 を体 k 上の楕円曲線とする。E1 と E2 の間の同種写像は、定数ではない多様体の射 f : E1 → E2 で、基点を保存するような射である(つまり、f は E1 の恒等元を E2 の恒等元へ写す)。 2つの楕円曲線の間のすべての定数でない射は自動的に有限ファイバーを持つ全射となるので、これは上で示したのと同じ概念となる。 2つの楕円曲線 E1 と E2 に対して同種写像 E1 → E2 が存在するとき、E1 と E2 は同種(isogenous)であるという。これは同値関係であり、双対同種(dual isogeny)が存在するため対称となる。上記のように、全ての同種写像は楕円曲線の k に値を持つ点の群の準同型を誘導する。 関連項目
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia