実数値関数
実数値関数(じっすうちかんすう、英: real-valued function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。特に、定義域も実数の部分集合であるもの、すなわち実変数の実数値関数を実関数(じつかんすう、英: real function)という[1][2]。 多くの重要な関数空間が、いくつかの実数値関数からなるものとして定義されている。 一般の実数値関数X を任意の集合とする。F(X, R) を X から R への関数全体の集合で表すものとする。R は可換体であるので、F(X, R) はベクトル空間であり、実数上の結合多元環は、以下のように定義できる。
また、R は順序集合であることから、F(X, R) には以下のような半順序が入る。 これによって、F(X, R) は半順序環とある。 可測な実数値関数ボレル集合の σ-代数は実数上に定義される重要な構造である。X が σ-代数を持ち、関数 f が、すべてのボレル集合 B に対して、その原像 f−1(B) が X の σ-代数に属しているとき、f は可測であるという。この可測関数はまた、うえで説明したようなベクトル空間と代数をつくる。 連続な実数値関数実数は、位相空間であり完備距離空間である。連続な実数値関数(これは暗黙のうちに X が位相空間であることを主張する)は位相空間や距離空間の理論で重要なものである。極値定理は、コンパクト空間上のすべての連続な実数値関数には(極小、極大にとどまらない大域的な)最小値と最大値が存在することを主張する。 脚注注釈出典文献 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia