対数関数的成長対数関数的成長(たいすうかんすうてきせいちょう、英:logarithmic growth)または対数関数的増加、対数的増加とは、ある量の増大する速さが時間が経つにつれて、どんどん減少する対数関数で表せる現象のことである(例:)。対数関数的成長は指数関数的成長の逆であり、増加する速さがとても遅い[1]。 ![]() 例えば、位取り記数法で表される正の整数 の桁数の増長は対数関数 で表せ、桁数は で表せる。ただし、 がその記数法の基数である。例えば十進法で表した数 を上式に代入したら 、 を代入したら と成り立っている[2]。 高等数学では、調和級数の部分和が対数関数的成長の例である[3]。
アルゴリズム設計において、対数関数的成長とその変体である対数線形などが作業効率を表すことに魅力的である。二分探索などのプログラムの時間複雑度の分析にも用いられている[4]。 微生物学では、細胞培養における急速に増加する指数関数的増長する段階は、対数関数的増長と呼ばれることがある。この増殖曲線で、現れる新しい細胞が細胞の総数と比例していることがわかるが、この専門用語の混同問題は対数スケールで指数関数的成長の曲線を直線にすることができることで釈明できる[5]。 出典
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia