忠実加群環 A 上の(左または右)加群 M は、その零化イデアル AnnA (M) が {0} であるときに、忠実(英: faithful)であるという。言い換えると、各 の作用が自明でない(ある x ∈ M に対して α・x ≠ 0)ということである。別の言い方をすれば、対応する表現 が単射である。 任意の加群に対して、次のようにして忠実加群を対応させることができる。環準同型 は、単射準同型 によって分解する。ker ψ は AnnA (M) に他ならないので、 によって M に A / AnnA (M)-加群としての構造が入り、このとき は単射なので M は忠実である。 性質A-加群 M の任意の元 x に対して Mx = M とおくと、写像 は A-準同型である。このとき ker φ = AnnA (M) なので、準同型定理より を得る。したがって M が忠実加群であれば、A は(自然にA-加群と見て) の部分加群に同型である。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia