戸田の定理戸田の定理(とだのていり、英: Toda's theorem)とは、1991年に戸田誠之助が証明した計算量理論における定理である[1]。戸田はこの功績により1998年のゲーデル賞を受賞している。 主張この定理は多項式階層にあるすべてのクラスの和集合であるPHがPPPに含まれることを示している。また、この事実よりPHがP#Pに含まれていることも示される。 定義#Pは多項式時間で検証可能な問題(つまりはNPに属する問題)に対する解の数を正確に数える問題の集合であり、PP は、間違う確率が常に1/2未満となるような確率的チューリング機械で多項式時間で解ける決定問題の集合である。P#Pは,#Pの任意の(#Pオラクルに対して多項式時間)に対する答えを瞬時に得ることができれば、多項式時間で解くことができるすべての問題から構成される。従って、戸田の定理より、多項式階層の任意の問題に対して数え上げ問題(英語版)への決定性多項式時間変換が存在することが意味される。[2] BSS機械(英語版)に基づく実数上の複雑性理論での類似の結果は、2009年にSaugata BasuとThierry Zellによって証明され[3]、2011年にはSaugata Basuによって戸田の定理の複素数類似が証明された。[4] 証明証明は大きく二つの部分から成る。
この二つの結果より、以下の関係が導かれる。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia