接吻数問題
(n 次元)接吻数問題(せっぷんすうもんだい、kissing number problem)とは「n 次元の単位球の周りに単位球を重ならず触れ合うように並べるとき、最大何個並べることができるか」という問題である。その個数のことを接吻数という。 0次元、1次元、2次元、3次元、4次元、8次元、24次元の接吻数が分かっており、それぞれ 0、2、6、12、24、240、196560 である。
3次元接吻数問題3次元接吻数問題は、1694年のアイザック・ニュートンとデイヴィッド・グレゴリー (en) の議論に端を発するが、完全に解決されたのは1953年のクルト・シュッテとファン・デル・ヴェルデンの論文による[1]。 接吻数の表この表は、2018年の段階で判明した、様々な次元における接吻数がとりうる範囲表である[2]。太字で書かれた次元は、接吻数が確定した次元である。
注釈
参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia