接続円錐曲線法接続円錐曲線法(せつぞくえんすいきょくせんほう、英: patched conic approximation, patched two-body approximation[1][2])、またはパッチドコニックス法とは、多体環境にいる宇宙機の軌道計算を簡略化するための方法である。 方法n個の天体(たとえば、太陽・惑星・衛星)の各々に影響圏(英: sphere of influence, SOI)を割り当て、空間をさまざまな部分に分割することで行われる。宇宙機がより小さい天体の影響圏内にいる場合は、宇宙機とその天体との間の重力のみが考慮され、そうでない場合は宇宙機とより大きな天体との間の重力が考慮される。これにより、複雑な多体問題は複数の二体問題に分割され、その解はよく知られたケプラー軌道の円錐曲線になる。宇宙機が惑星間航行を行う際の軌道のよい近似が得られるが、十分に正確な近似を得られない場合もある[3]。特に、ラグランジュ点をモデル化していない点に留意すべきである。 例たとえば、地球から火星へ移動する場合、地球の重力井戸からの脱出には双曲線軌道が必要となり、地球の影響圏から火星の影響圏への移動には、太陽の影響圏内で楕円軌道、または双曲線軌道が必要となる。これらの円錐曲線をつなぎ合わせる(各々の位置と速度ベクトルを合わせる)ことで、そのミッションの適切な軌道が求まる。 脚注
参考文献
関連項目
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia