推移関係
推移関係(すいいかんけい、英: Transitive relation)は、数学における二項関係の一種。集合 X の二項関係 R が推移的であるとは、Xの任意の元 a、b、c について、a と b に R が成り立ち、b と c に R が成り立つとき、a と c にも R が成り立つことをいう。推移的関係とも。 一階述語論理でこれを表すと、次のようになる。 推移関係の数え上げ他の関係とは異なり、ある有限集合における推移関係の数を数える一般的方法は存在しない(N個のノードにおける推移関係数の数列)[1]。しかし、同時に反射的で対称的な関係の数を数える方法は定式化されている(N個の番号付きボールをN個の区別の無い箱に入れる組み合わせ)。また、対称的で推移的な場合、対称的な場合、非推移的な場合、完全かつ推移的で非対称的な場合についても定式化されている。Pfeiffer による研究があり、これらの属性の組み合わせの関係数を定式化した[2]。しかし、個々の属性の関係を数えることはまだ困難とされている。 例例えば、 でかつ であれば、 である。以下は推移関係である。 一方、以下は推移関係でない。
推移性の属性推移関係のもとでは以下の関係は同値である。 推移性を必要とする他の属性
脚注
参考文献
関連項目外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia