必要なマスターロールの本数の単純な下限は、全ての製品ロールの幅の総和をマスターロール1本の幅で割ることで求められる。この場合、総長は 1380 x 22 + 1520 x 25 + ... + 2200 x 20 = 407160 mm で、マスターロールは 5600 mm なので、割り算をすると72.7本、よって73本は最低でも必要ということになる。
最小パターン数問題(minimum pattern count problem):廃棄量が最小となるような解の中で、用いるパターン数を最小に抑えるものを探す。たとえ最適廃棄量がわかっていたとしても、非常に難しい問題である[10][11][12]。1次元で制約条件が等号の場合、製品種類が n 通りであれば、パターン数が n + 1 以下となる最適解が存在すると予想されている。
^Wäscher, G.; Haußner, H.; Schumann, H. An Improved Typology of Cutting and Packing Problems. European Journal of Operational Research Volume 183, Issue 3, 1109-1130
^M.P. Johnson, C. Rennick & E. Zak (1997), Skiving addition to the cutting stock problem in the paper industry, SIAM Review, 472-483
^Raffensperger, J. F. (2010). “The generalized assortment and best cutting stock length problems”. International Transactions in Operational Research17: 35. doi:10.1111/j.1475-3995.2009.00724.x.
^L. V. Kantorovich Mathematical methods of organizing and planning production. Leningrad State University. 1939
^Kantorovich L. V. and Zalgaller V. A. . (1951). Calculation of Rational Cutting of Stock. Lenizdat, Leningrad
^Gilmore P. C., R. E. Gomory (1961). A linear programming approach to the cutting-stock problem. Operations Research 9: 849-859
^Gilmore P. C., R. E. Gomory (1963). A linear programming approach to the cutting-stock problem - Part II. Operations Research 11: 863-888
^Goulimis C (1990). Optimal solutions for the cutting stock problem. European Journal of Operational Research 44: 197-208
^de Carvalho V (1998). Exact solution of cutting stock problems using column generation and branch-and-bound. International Transactions in Operational Research 5: 35–44
^S. Umetani, M. Yagiura, and T. Ibaraki (2003). One dimensional cutting stock problem to minimize the number of different patterns. European Journal of Operational Research 146, 388–402
^A. Diegel, E. Montocchio, E. Walters, S. van Schalkwyk and S. Naidoo (1996). Setup minimizing conditions in the trim loss problem. European Journal of Operational Research 95:631-640
^Maria Garcia de la Banda, P. J. Stuckey. Dynamic Programming to Minimize the Maximum Number of Open Stacks. INFORMS Journal on Computing, Vol. 19, No. 4, Fall 2007, 607-617.
Hatem Ben Amor, J.M. Valério de Carvalho, Cutting Stock Problems in Column Generation, edited by Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, Springer, 2005, XVI, ISBN0-387-25485-4
M. Delorme, M. Iori, S. Martello, Bin packing and cutting stock problems: Mathematical models and exact algorithms, European Journal of Operational Research 2016, 255, 1–20, doi:10.1016/j.ejor.2016.04.030