環上の多元環数学の殊に環論において可換環上の代数あるいは多元環(たげんかん、英: algebra)は、体上の多元環の概念において係数体を考えるところを置き換えて可換環を係数環としたものである。 本項においては、環と言えば単位元を持つものと仮定する。 厳密な定義R を可換環とするとき、R 上の多元環 (R-algebra) とは、R-加群 A であって、A の乗法と呼ばれる双線型な二項演算 を備えたものを言う。即ち A の乗法は任意のスカラー a, b ∈ R と任意の元 x, y, z ∈ A について
を満たす。 結合多元環→詳細は「結合的多元環」を参照
多元環 A が A の乗法に関して(単位的)半群を成す、つまり乗法が結合的(かつ単位元を持つ)ならば、R-多元環 A は R-結合多元環と言う。即ち、結合多元環は、それ自体が(環上の)環を成し、環の概念を一般化するものである。R 上の結合多元環を、環準同型 f: R → A が存在して f の像が A の中心に含まれるような環 A として定義することもできる。 関連項目例として: 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia