確率的で近似的に正しい学習
確率的で近似的に正しい学習(英: probably approximately correct learning)やPAC学習(英: PAC learning)とは、機械学習の計算論的学習理論において、機械学習の数学的解析フレームワークの1つである。Leslie Valiant が1984年に提唱した[1]。 このフレームワークにおいて、学習アルゴリズムは標本を受け取り、仮説と呼ばれる汎化した関数をある関数クラスの中から選択する必要がある。目標は、高い確率で、選択した関数が小さな汎化誤差になる事である。学習アルゴリズムは、与えられた近似比率、成功率、標本分布から概念を学習する必要がある。 このモデルは後にノイズ(誤分類された標本)を扱えるように拡張された。 PACフレームワークの重要なイノベーションは、計算論的学習理論という概念を機械学習にもたらしたことである。特に、学習アルゴリズムは(時間計算量と空間計算量が訓練データサイズの多項式サイズの制限の元で)適切な関数を見つけ出すことが期待され、学習アルゴリズムは(訓練データサイズが仮説空間サイズの多項式サイズに収まっているなど)効率的な手順を実装する必要がある。 定義二値分類問題を対象とする。評価関数は誤分類率。以下のように記号を定義する。
仮説集合 H が PAC 学習可能とは、任意の と に対して、 の時、つまり、学習アルゴリズムが必要とする訓練データ数以上の訓練データがある時に、確率 以上で、評価データでの誤分類率が 以下となる学習アルゴリズムが存在する時、PAC 学習可能という。[2][3] 参照
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia