線分![]() 幾何学における線分(せんぶん、英: Line segment)とは、2つの点を通る直線の部分であって、それら2点を含んで間に挟まる全ての点からなるものである。 概要通常は端点も含むものとするが、端点を含まないものも線分として認め、端点を含む狭義の線分を閉線分、含まないものを開線分とすることもある。 もっと一般に、端点がある1つの多角形の頂点となっている線分は、その端点が多角形の隣接する2頂点であるときその多角形の辺となり、そうでないときには対角線である。 また、端点が円周のような1つの曲線上に載っているとき、その線分はその曲線の弦と呼ばれる。 定義V を R または C 上のベクトル空間とし、L を V の部分集合とする。L がある適当なベクトル u, v ∈ V を選べば とパラメータ付けできるとき、L は線分(閉線分)であるという。あるいは同じことだが「線分は2点の凸包である」と定義してもよい。 この時、ベクトル u, u + v は L の端点 (end point) と呼ばれる。 線分が「開」か「閉」かの区別を要することもある。このとき、閉線分の定義は上述のもの、開線分 L は u, v ∈ V を選んで とパラメータ付けできる。片方の端点のみ開いた半開線分は、閉じた方の端点を u ∈ V 、開いた方を u + v ∈ V として となる。 性質
関連項目参考文献
外部リンク
この記事は、クリエイティブ・コモンズ・ライセンス 表示-継承 3.0 非移植のもと提供されているオンライン数学辞典『PlanetMath』の項目Line segmentの本文を含む |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia