^Maisonpierre PC, Le Beau MM, Espinosa R, Ip NY, Belluscio L, de la Monte SM, Squinto S, Furth ME, Yancopoulos GD (July 1991). “Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations”. Genomics10 (3): 558–68. doi:10.1016/0888-7543(91)90436-I. PMID1889806.
^Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (March 1995). “A BDNF autocrine loop in adult sensory neurons prevents cell death”. Nature374 (6521): 450–3. doi:10.1038/374450a0. PMID7700353.
^Szuhany KL, Bugatti M, Otto MW (October 2014). “A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor”. J Psychiatr Res60C: 56–64. doi:10.1016/j.jpsychires.2014.10.003. PMID25455510. "Consistent evidence indicates that exercise improves cognition and mood, with preliminary evidence suggesting that brain-derived neurotrophic factor (BDNF) may mediate these effects. The aim of the current meta-analysis was to provide an estimate of the strength of the association between exercise and increased BDNF levels in humans across multiple exercise paradigms. We conducted a meta-analysis of 29 studies (N = 1111 participants) examining the effect of exercise on BDNF levels in three exercise paradigms: (1) a single session of exercise, (2) a session of exercise following a program of regular exercise, and (3) resting BDNF levels following a program of regular exercise. Moderators of this effect were also examined. Results demonstrated a moderate effect size for increases in BDNF following a single session of exercise (Hedges' g = 0.46, p < 0.001). Further, regular exercise intensified the effect of a session of exercise on BDNF levels (Hedges' g = 0.59, p = 0.02). Finally, results indicated a small effect of regular exercise on resting BDNF levels (Hedges' g = 0.27, p = 0.005). ... Effect size analysis supports the role of exercise as a strategy for enhancing BDNF activity in humans"
^Denham J, Marques FZ, O'Brien BJ, Charchar FJ (February 2014). “Exercise: putting action into our epigenome”. Sports Med44 (2): 189–209. doi:10.1007/s40279-013-0114-1. PMID24163284. "Aerobic physical exercise produces numerous health benefits in the brain. Regular engagement in physical exercise enhances cognitive functioning, increases brain neurotrophic proteins, such as brain-derived neurotrophic factor (BDNF), and prevents cognitive diseases [76–78]. Recent findings highlight a role for aerobic exercise in modulating chromatin remodelers [21, 79–82]. ... These results were the first to demonstrate that acute and relatively short aerobic exercise modulates epigenetic modifications. The transient epigenetic modifications observed due to chronic running training have also been associated with improved learning and stress-coping strategies, epigenetic changes and increased c-Fos-positive neurons ... Nonetheless, these studies demonstrate the existence of epigenetic changes after acute and chronic exercise and show they are associated with improved cognitive function and elevated markers of neurotrophic factors and neuronal activity (BDNF and c-Fos). ... The aerobic exercise training-induced changes to miRNA profile in the brain seem to be intensity-dependent [164]. These few studies provide a basis for further exploration into potential miRNAs involved in brain and neuronal development and recovery via aerobic exercise."
^Phillips C, Baktir MA, Srivatsan M, Salehi A (2014). “Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling”. Front Cell Neurosci8: 170. doi:10.3389/fncel.2014.00170. PMC4064707. PMID24999318. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064707/. "Moreover, recent evidence suggests that myokines released by exercising muscles affect the expression of brain-derived neurotrophic factor synthesis in the dentate gyrus of the hippocampus, a finding that could lead to the identification of new and therapeutically important mediating factors. ... Studies have demonstrated the intensity of exercise training is positively correlated with BDNF plasma levels in young, healthy individuals (Ferris et al., 2007). Resistance exercise has also been shown to elevate serum BDNF levels in young individuals (Yarrow et al., 2010). Moreover, it has been shown that moderate levels of physical activity in people with AD significantly increased plasma levels of BDNF (Coelho et al., 2014). ... In humans, it has been shown that 4 h of rowing activity leads to increased levels of plasma BDNF from the internal jugular (an indicator of central release from the brain) and radial artery (an indicator of peripheral release; Rasmussen et al., 2009). Seifert et al. (2010) reported that basal release of BDNF increases following 3 months endurance training in young and healthy individuals, as measured from the jugular vein. These trends are augmented by rodent studies showing that endurance training leads to increased synthesis of BDNF in the hippocampal formation (Neeper et al., 1995, 1996). ... Both BDNF and IGF-1 play a significant role in cognition and motor function in humans. ... Multiple large-scale studies in humans have shown that serum levels of IGF-1 are correlated with fitness and as well as body mass indices (Poehlman and Copeland, 1990). Furthermore, animal studies have shown that exercise in rats is associated with increased amounts of IGF-1 in the CSF."
^Heinonen I, Kalliokoski KK, Hannukainen JC, Duncker DJ, Nuutila P, Knuuti J (November 2014). “Organ-Specific Physiological Responses to Acute Physical Exercise and Long-Term Training in Humans”. Physiology (Bethesda)29 (6): 421–436. doi:10.1152/physiol.00067.2013. PMID25362636. "The Effects of Acute Exercise Studies in humans and animals have shown that brain blood flow remains largely unchanged in response to acute exercise[,] ... does not increase with increasing exercise intensity[, and] ... increased metabolic demands of active brain parts are mostly met by redistributing oxygen supply, although changes in oxygen extraction may also contribute. During exercise, blood flow is directed to the areas controlling locomotor, vestibular, cardiorespiratory, and visual functions (8, 91), facilitated by direct communication of neurons and vascular cells (94, 134). ... with increasing exercise intensity, brain glucose uptake decreases (75) as the uptake and utilization of lactate is enhanced (65, 139, 182). Regional differences in brain glucose uptake are also evident, which is furthermore influenced by the level of physical fitness. Thus the decrease in glucose uptake in the dorsal part of the anterior cingulate cortex during exercise is significantly more pronounced in subjects with higher exercise capacity (75) ... The Effects of Long-Term Exercise Training [A] physically active lifestyle has been shown to lead to higher cognitive performance and delayed or prevented neurological conditions in humans (71, 101, 143, 191). ... The production of brain-derived neurotrophic factor (BDNF), a key protein regulating maintenance and growth of neurons, is known to be stimulated by acute exercise (145), which may contribute to learning and memory. BDNF is released from brain already at rest but increases two- to threefold during exercise, which contributes 70–80% of circulating BDNF (145)."