よくシム 調整されたサンプルの自由誘導減衰 (FID) 核磁気共鳴 (NMR) シグナル
フーリエ変換NMR における自由誘導減衰 (じゆうゆうどうげんすい、英 : free induction decay, FID )は、磁場 中の(通常z軸に沿った)非平衡核スピン磁化歳差運動 によって生成する可観測のNMRシグナルである。この非平衡磁化は、一般的に核スピン のラーモア周波数 に近い共鳴 高周波 のパルス を印加することによって誘導することができる。
もし磁化ベクトル がxy平面中に非ゼロ成分を有していると、歳差磁化はサンプル周辺の検出コイルにおいて対応する発振電圧を誘導 する。この時間領域 シグナルは通常デジタイズ され、次にNMRシグナルの周波数スペクトル すなわちNMRスペクトルを得るためにフーリエ変換 される[ 1] 。
NMRシグナルの持続時間は、究極的にはスピン-スピン緩和 によって制限されるが、異なるNMR周波数間の相互干渉 もまたシグナルのより素早い減衰の原因となる。溶液サンプルを用いたNMRの場合など、NMR周波数がよく分離している時は、FIDの全体の減衰は緩和支配であり、FIDはおおよそ指数関数である(時定数 T2 あるいはより正確にはT2 * )。時間の関数としての磁化のy軸成分は以下の式で表わされる。
M
y
(
t
)
=
M
cos
(
2
π
ν
L
t
)
e
−
t
/
T
2
{\displaystyle M_{y}(t)=M\cos(2\pi \nu _{L}t)e^{-t/T_{2}}}
M はRFパルスの瞬間に存在する磁化の成分、νL はラーモア周波数、t は経過時間である。
共鳴周波数が化学シフトの分(Δv )だけ中心周波数からずれたFID信号をフーリエ変換すると
F
(
ν
)
=
M
⋅
∫
−
∞
∞
cos
(
2
π
Δ
ν
t
)
⋅
e
−
t
/
T
2
⋅
e
−
2
π
i
ν
t
{\displaystyle F(\nu )=M\cdot \int _{-\infty }^{\infty }\cos(2\pi \Delta \nu t)\cdot e^{-t/T_{2}}\cdot e^{-2\pi i\nu t}}
=
M
2
∫
0
∞
e
−
{
1
+
2
π
i
(
ν
−
Δ
ν
)
T
2
/
T
2
}
t
d
t
+
M
2
∫
0
∞
e
−
{
1
+
2
π
i
(
ν
+
Δ
ν
)
T
2
/
T
2
}
t
d
t
{\displaystyle ={\frac {M}{2}}\int _{0}^{\infty }e^{-\{1+2\pi i(\nu -\Delta \nu )T_{2}/T_{2}\}t}dt+{\frac {M}{2}}\int _{0}^{\infty }e^{-\{1+2\pi i(\nu +\Delta \nu )T_{2}/T_{2}\}t}dt}
=
0.5
M
T
2
1
+
4
π
2
(
ν
−
Δ
ν
)
2
T
2
2
−
i
0.5
M
⋅
2
π
(
ν
−
Δ
ν
)
T
2
2
1
+
4
π
2
(
ν
−
Δ
ν
)
2
T
2
2
{\displaystyle ={\frac {0.5MT_{2}}{1+4\pi ^{2}(\nu -\Delta \nu )^{2}{T_{2}}^{2}}}-i{\frac {0.5M\cdot 2\pi (\nu -\Delta \nu ){T_{2}}^{2}}{1+4\pi ^{2}(\nu -\Delta \nu )^{2}{T_{2}}^{2}}}}
+
0.5
M
T
2
1
+
4
π
2
(
ν
+
Δ
ν
)
2
T
2
2
−
i
0.5
M
⋅
2
π
(
ν
+
Δ
ν
)
T
2
2
1
+
4
π
2
(
ν
+
Δ
ν
)
2
T
2
2
{\displaystyle +{\frac {0.5MT_{2}}{1+4\pi ^{2}(\nu +\Delta \nu )^{2}{T_{2}}^{2}}}-i{\frac {0.5M\cdot 2\pi (\nu +\Delta \nu ){T_{2}}^{2}}{1+4\pi ^{2}(\nu +\Delta \nu )^{2}{T_{2}}^{2}}}}
となる。実部はローレンツ型 の吸収曲線、虚部は分散曲線となっている[ 2] 。
FIDの持続時間は1 H といった核では秒単位である。もし固体NMR の場合のようにNMRの線形が緩和支配でない場合は、NMRシグナルは一般的により早く、例えば1 H NMRではマイクロ秒で減衰する。
特にもしごく限られた周波数成分しか存在しなければ、FIDは水素を含む航空燃料、乳製品の固体と液体の比といったサンプルの物理学的性質を定量的に決定するために、直接解析される(時間領域NMR)。
歴史
1948年 Russell H. Varianが自由誘導減衰 信号の検出に関して記述した"Method and means for correlating nuclear properties of atoms and magnetic fields"を出願した。アメリカ合衆国特許第 2,561,490号
1949年にアーウィン・ハーン がスピンエコー法 を発見した。
脚注