超双曲型方程式数学の偏微分方程式の分野において、超双曲型方程式(ちょうそうきょくがたほうていしき、英: ultrahyperbolic equation)とは、2n 個の変数 x1, ..., xn, y1, ..., yn を持つ未知スカラー函数 u に対する、次の形の偏微分方程式を言う: より一般に、a が符号数 (n,n) を持つ 2n 変数の任意の二次形式であるとき、主要部が である任意のPDEは超双曲型と呼ばれる。そのような任意の方程式は、変数変換によって上述の (1) の形状に書き換えられる[1]。 超双曲型方程式は多くの観点から研究されている。一方それは、古典的な波動方程式に似たものでもある。このことより、その特性曲線に関する多くの結果が得られている。その内の一つは、フリッツ・ジョンによるジョンの方程式である。 Walter Craig と Steven Weinstein は近年(2008)、非局所的な制限の下で、余次元 1 の超曲面上で与えられる初期値に関する初期値問題は適切であることを示した[2]。 この方程式はまた、対称空間や楕円型微分作用素の観点からも研究されている[3]特に、超双曲型方程式は調和函数に対する平均値の定理に似たものを満たす。 注釈
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia