述語論理英: predicate logic)とは、数理論理学における記号的形式体系群を指す用語で、一階述語論理、二階述語論理、多ソート論理、無限論理などが含まれる。これらの形式体系の特徴は、論理式に含まれる変数を量化できる点である。一般的な量化子として、 全称量化子 ∀ と存在量化子 ∃ とがある。変数は議論領域の要素、関係、関数などである。例えば、関数記号に対する存在量化は「ある関数が存在する」という修飾として解釈される。述語論理の基礎は、ゴットロープ・フレーゲとチャールズ・サンダース・パースがそれぞれ独自に生み出し発展させた[1]。 (じゅつごろんり、述語論理と言った場合、一階述語論理を指すこともある。述語論理の公理化された形態を述語計算[注釈 1]と呼び、述語論理は非形式的でより直観的なものとする見方もある[2]。 様相作用素と量化子を併用する論理も述語論理の一種とされる。これについては様相論理を参照。 脚注注釈出典
参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia