部分的最小二乗法は、スウェーデンの統計学者ヘルマン・ウォルド(英語版)によって発表された。ウォルドはその後息子のスヴァンテ・ウォルド(スウェーデン語版)と共にこの手法を発展させた。PLSの(スヴァンテ・ウォルドによればより正確な[1])別称は、「projection to latent structures」(潜在構造への射影)であるが、多くの分野において「部分的最小二乗法」という用語が未だに優勢である。PLS回帰の最初の応用は社会科学分野でのものだったが、今日、PLS回帰は計量化学(ケモメトリクス)と関連領域において最も広く使われている。また、バイオインフォマティクス、感覚計量学、神経科学、人類学でも使われている。
^de Jong, S. (1993). “SIMPLS: an alternative approach to partial least squares regression”. Chemometrics and Intelligent Laboratory Systems18 (3): 251–263. doi:10.1016/0169-7439(93)85002-X.
^Abdi, H. (2010). “Partial least squares regression and projection on latent structure regression (PLS-Regression)”. Wiley Interdisciplinary Reviews: Computational Statistics2: 97–106. doi:10.1002/wics.51.
^Trygg, J; Wold, S (2002). “Orthogonal Projections to Latent Structures”. Journal of Chemometrics16 (3): 119–128. doi:10.1002/cem.695.
^Sæbøa, S.; Almøya, T.; Flatbergb, A.; Aastveita, A.H.; Martens, H. (2008). “LPLS-regression: a method for prediction and classification under the influence of background information on predictor variables”. Chemometrics and Intelligent Laboratory Systems91 (2): 121–132. doi:10.1016/j.chemolab.2007.10.006.
Haenlein, Michael; Kaplan, Andreas M. (2004). “A Beginner's Guide to Partial Least Squares Analysis”. Understanding Statistics3 (4): 283–297. doi:10.1207/s15328031us0304_4.
Henseler, Joerg; Fassott, Georg (2005). Testing Moderating Effects in PLS Path Models. An Illustration of Available Procedures.
Lingjærde, Ole-Christian; Christophersen, Nils (2000). “Shrinkage Structure of Partial Least Squares”. Scandinavian Journal of Statistics27 (3): 459–473. doi:10.1111/1467-9469.00201.
Tenenhaus, Michel (1998). La Régression PLS: Théorie et Pratique. Paris: Technip.
Rosipal, Roman; Kramer, Nicole (2006). Overview and Recent Advances in Partial Least Squares, in Subspace, Latent Structure and Feature Selection Techniques. pp. 34–51.
Helland, Inge S. (1990). “PLS regression and statistical models”. Scandinavian Journal of Statistics17 (2): 97–114. JSTOR4616159.
Wold, Herman (1966). “Estimation of principal components and related models by iterative least squares”. In Krishnaiaah, P.R.. Multivariate Analysis. New York: Academic Press. pp. 391–420
Wold, Herman (1981). The fix-point approach to interdependent systems. Amsterdam: North Holland
Wold, Herman (1985). “Partial least squares”. In Kotz, Samuel; Johnson, Norman L.. Encyclopedia of statistical sciences. 6. New York: Wiley. pp. 581–591
Wold, Svante; Ruhe, Axel; Wold, Herman; Dunn, W.J. (1984). “The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses”. SIAM Journal on Scientific and Statistical Computing5 (3): 735–743. doi:10.1137/0905052.
Stone, M.; Brooks, R.J. (1990). “Continuum Regression: Cross-Validated Sequentially Constructed Prediction embracing Ordinary Least Squares, Partial Least Squares and Principal Components Regression”. Journal of the Royal Statistical Society, Series B52 (2): 237–269. JSTOR2345437.
Wan Mohamad Asyraf Bin Wan Afthanorhan. (2013). A Comparison Of Partial Least Square Structural Equation Modeling (PLS-SEM) and Covariance Based Structural EquationModeling (CB-SEM) for Confirmatory Factor Analysis International Journal of Engineering Science and Innovative Technology (IJESIT), 2(5), 9.