K-頂点連結グラフ数学のグラフ理論において、頂点集合 を備えるグラフ が k-頂点連結(k-ちょうてんれんけつ、英: k-vertex-connected)あるいはk-連結であるとは、 k より少ない数の頂点を取り除いても依然として連結グラフであることを言う。 つまり、点連結度がk以上のグラフのことである。 代替的に、グラフがk-連結であるとは、それらを除いたときに グラフが非連結となるような頂点の最小部分集合の大きさが k であることを言う[1]。 グラフが完全でないことと同値な定義は、任意の二つの頂点が k 独立な道 (点素パス) によって 結ばれるときにグラフがk-連結であることである; メンガーの定理を参照されたい(Diestel 2005, p. 55)。 しかしながら、完全グラフに対して、上述の二つの定義は異なるものとなる: n-頂点の完全グラフは、 頂点を除去することに基づいた定義に従うとその連結度は非有界となるが、 独立な道に基づいた定義に従うと、その連結度は n − 1 になる。 そして、何人かの研究者は、連結度が n となるような代替的な定義を用いている[1]。 1-頂点連結グラフは、連結であると言われ、2-頂点連結グラフは2重連結であると言われる。 グラフの頂点連結度あるいは単純に連結度とは、 そのグラフ k-頂点連結であるような k の最大数のことを言う。 任意のk-次元凸ポリトープのスケルトンは、 k-頂点連結グラフを形成する(バリンスキーの定理、Balinski 1961)。 その部分的な逆として、シュタイニッツの定理では、任意の3-頂点連結平面グラフは凸多面体のスケルトンを形成する、ということが述べられている。 関連項目数学的対象と性質定理問題その他注釈参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia