カルタンの定理 (リー群)
数学において、リー群論の3つの結果が、エリ・カルタンにちなんで、カルタンの定理 (Cartan's theorem) と呼ばれている。 閉部分群定理カルタンの定理は閉部分群定理 (closed subgroup theorem) を意味することがある。この定理は、リー群 G に対し、任意の閉部分群が部分リー群であるというものである[1]。 表現論においてカルタンの定理は、半単純リー群の表現論において、最高ウェイトベクトルに関するある定理を意味することもある。 リー代数と単連結リー群の同値性単連結実リー群の圏と有限次元実リー代数の圏の同値性を、普通は、カルタンの定理、あるいは、カルタン・リーの定理と呼ぶ(20世紀後半の文献において)。これは、エリ・カルタンにより証明されたことであり、一方、ソフス・リー(S. Lie)は早い時期に無限小版を証明した(モーレー・カルタンの方程式の局所可解性(モーレー・カルタンの微分形式を参照))、あるいは、有限次元リー代数の圏と局所リー群の圏の同値性)。リーは、彼の結果を 3つの方向で 3つの変換定理を一覧とした。カルタンの定理の無限小版は、本質的には、彼の第三の逆定理であり、よってセール(Serre)は書籍の中でこのように呼んだ。しかし、「第三のリーの定理」(third Lie theorem)と呼び方は、歴史的には誤っている。しかし、多くの一般化との関係で、最近の十数年では、よく使われている。 関連項目脚注
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia