コンウェイ多項式コンウェイ多項式(コンウェイたこうしき、Conway polynomial)とは、スケイン関係式によって帰納的に計算される絡み目の(一変数)多項式不変量である。 ここでは、絡み目のダイアグラム K に関する変数zのコンウェイ多項式を P(K) で表そう。 まず自明な結び目に対しては、そのコンウェイ多項式は と定める。コンウェイ多項式が満たすスケイン関係式は次のようになる; 言葉で述べれば、ある交点において正の交点をもつダイアグラム(正則表示)の多項式から、その交点を負の交点にしたできたダイアグラムの多項式を引いたものは、その交点を円滑化してできたダイアグラムの多項式に z をかけたものに等しい。 特に、コンウェイ多項式は負のべきを含まない多項式であることがわかる。 1970年ごろに、ジョン・ホートン・コンウェイによって発見された。変数変換をすれば本質的にアレキサンダー多項式に等しい; として変換すると、変数 t に関するアレキサンダー多項式と等しくなる。このため、両者をまとめてアレキサンダー-コンウェイ多項式と呼ぶこともある。コンウェイ自身はスケイン関係式を発見したが証明しなかったようで、ルイス・カウフマンがザイフェルト行列を用いて初めて証明したようだ。 量子不変量の観点からは、コンウェイ多項式はリー超代数 から導かれる不変量の特殊値である。 関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia