ホモクリニック軌道![]() 数学において、ホモクリニック軌道(homoclinic orbit)とは、力学系における流れの軌跡で、鞍点(saddle point)から出て、同じ鞍点に戻ってくる軌道である。 より厳密に、鞍点での安定多様体と不安定多様体の積集合とも定義できる。 反復写像系(離散力学系)でも、ホモクリニック軌道や、ホモクリニックポイントは同様に、安定多様体と不安定多様体の不動点と周期点を用いて定義することができる。 微分方程式系での定義が不動点であり、解が次を満たすならばホモクリニック軌道である。 もし、相空間が3次元以上ならば、鞍点上の不安定多様体をより詳しく調べる必要がある。 大別して2つの場合について述べる。 一つ目は、不安定多様体が幾何学的には円筒型と同相である場合で、 二つ目は、不安定多様体が幾何学的には、メビウスの輪と同相である場合である。 二つ目のホモクリニック軌道を特に、ねじれていると呼ぶ。 離散力学系についても、ホモクリニック軌道は定義可能である。
写像が、多様体の微分同相であるとき、
が同じ未来と過去を持っている、つまりは、不動点または周期点が存在する
であるとき、をホモクリニックポイントと呼ぶ。 ![]() ![]() 参考文献
外部リンク
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia