マンガレリの等式数学の常微分方程式の分野におけるマンガレリの等式(マンガレリのとうしき、英: Mingarelli identity)とは、実領域におけるある線型微分方程式の解が振動的であるか非振動的であるかを判別するための条件を与える定理で、フィリップ・ハートマンにより名付けられた[1]。ピコーンの等式を二つの微分方程式から三つあるいはそれ以上の二階微分方程式へと拡張するものである。ここでは最も基本的な形式のものを紹介する。 等式t-区間 [a, b] 上の二階線型微分方程式系 の 個の解を考える。ただし である。 は前進差分を表す作用素、すなわち で与えられる作用素とする。二次の差分作用素は、この一次の作用素を のように繰り返すことで得られ、より高次の差分についても同様に定義される。 以下では簡単のために独立変数 t を省略し、(a, b] 上では が成立するものとする。このとき、次の等式が成り立つ[2]: ここで は対数微分であり、 はロンスキアン、 は二項係数を表す。 のとき、この等式はピコーンの等式となる。 上の等式は三つの線型微分方程式に対して、ただちに以下の比較定理を導く[3]。これはスツルム=ピコーンの比較定理の拡張である。 i = 1, 2, 3 を、区間 [a, b] 上の実数値連続関数とし、 を三つの自己随伴形式の二階同次線型微分方程式とし、
[a, b] 内のすべての t に対して、
の成立を仮定する。このとき、[a, b] 上で であり、 であるなら、任意の解 は [a, b] 内に少なくとも一つのゼロ点を持つ。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia