半局所単連結数学、特に位相幾何学において、位相空間 X の任意の点 x に対し、ある近傍 U が存在し、U の X の中への包含写像により導かれる U の基本群から X の基本群への準同型が自明になる場合、X を半局所単連結(はんきょくしょたんれんけつ、英:semi-locally simply connected)であるという。 ![]() 明らかに、局所単連結な空間は、単連結な空間同様、半局所単連結である。半局所単連結でない空間の例としては、ハワイの耳輪(英:Hawaiian earring)がある。これは、ユークリッド平面上で、正整数 n に対し、中心 (1/n, 0)、半径 1/n の円の和集合である。すると、原点の任意の近傍は、0 にホモトープでない円を含む。 半局所単連結性は、局所単連結性よりも弱い。これを見るため、ハワイの耳輪上の円錐を考える。これは可縮(英:contractible)であり、従って半局所単連結であるが、明らかに局所単連結ではない。 被覆空間論では、ある空間が弧状連結、局所弧状連結かつ半局所単連結である場合、かつその場合に限り、普遍被覆を有することが知られている。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia