範疇 (数学)数学において、範疇(はんちゅう)とは位相空間の部分集合を 2 通りに分類する方法のことである。カテゴリーと呼ぶことも多いが、同様にカテゴリーと呼ばれる圏とは全く異なるものである。 定義X を位相空間とし、A をその部分集合とする。 A の閉包の内部が空であるとき、A は疎であるという。A が可算個の疎な集合の和集合で表せるとき A は第 1 類であるといい、そうでないとき A は第 2 類であるという。第 1 類の集合をやせた集合ともいう。 第 1 類の集合の部分集合は第 1 類であり、可算個の第 1 類の集合の和集合は第 1 類である。 ベールの範疇定理完備距離空間の空でない開部分集合は第 2 類である。これをベールの範疇定理と呼ぶ。この定理は特に関数解析などで有用である。 この定理は、次のように言い換えることもできる:
ベール空間ベール空間とは、空でない任意の開部分集合が第 2 類であるような位相空間のことである。 ベールの範疇定理は、完備距離空間がベール空間であることを意味している。局所コンパクトなハウスドルフ空間もベール空間である。 脚注 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia