នៅជិតវាលគមនាគមន៍![]() ![]() Near field communication (NFC) គឺជាសំណុំនៃស្ដង់ដារបស់ទូរស័ព្ទឆ្លាតវៃ និង ឧបករណ៍ដទៃទៀតដែលធ្វើការទំនាក់ទំនងដោយរលកវិទ្យុ ដោយគ្រាន់តែដាក់ឧបករណ៍នោះជិតគ្នា ឬ ប៉ះគ្នា ដែលចម្ងាយជាមធ្យមគឺប៉ុន្មានសង់ទីម៉ែត្រ (៣សង់ទីម៉ែត្រ)។ កម្មវិធីដែលបានបង្កើតឡើងសម្រាប់ប្រើប្រាស់ជាមួយនឹង NFC រួមមានការផ្ទេរទិន្នន័យ ការតំឡើងទំនាក់ទំនង Wi-Fi [១] ការភ្ជាប់ទំនាក់ទំនងអាចធ្វើឡើងបានដោយឧបករណ៍ដែលមានNFC និង unpowered NFC chip ដែលហៅថា "tag".[២] ស្តង់ដារសប់ NFC រួមមាន protocols ទំនាក់ទំនង និងទំរង់នៃការផ្លាស់ប្ដូរព័ត៌មានដែលយោងតាមរលកវិទ្យុស្ដង់ដាដែលមានហើយ radio-frequency identification (RFID) ដូចជាISO/IEC 14443 និង FeliCa.[៣] ស្ដង់ដារួមមាន ISO/IEC 18092[៤] និងស្ដង់ដាដទៃទៀតដែលមានក្នុងវេទិកាពិភាក្សាអំពី NFC ដែលបានបង្កើតឡើងនៅឆ្នាំ២០០៤ដោយ Nokia Philips និង Sony ហើយបច្ចុប្បន្នមានសមាជិកជាង១៦០។ វេទិកាពិភាក្សានោះក៏បានផ្សព្វផ្សាយពីបច្ចេកវិទ្យា NFC និង អាជ្ញាបណ្ណលើឧបករណ៍ដែលប្រើប្រាស់បច្ចេកទេសនេះ[៥] '[[]]== Uses == NFC builds upon RFID systems by allowing two-way communication between endpoints, where earlier systems such as contactless smart cards were one-way only.[៦] Since unpowered NFC "tags" can also be read by NFC devices,[២] it is also capable of replacing earlier one-way applications. CommerceNFC devices can be used in contactless payment systems, similar to those currently used in credit cards and electronic ticket smartcards, and allow mobile payment to replace or supplement these systems. For example, Google Wallet allows consumers to store credit card and store loyalty card information in a virtual wallet and then use an NFC-enabled device at terminals that also accept MasterCard PayPass transactions.[៧] Germany,[៨] Austria,[៩] Finland,[១០] New Zealand,[១១] and Italy[១២] have trialed NFC ticketing systems for public transport. India is implementing NFC based transactions in box offices for ticketing purposes.[១៣] Bluetooth and Wi-Fi connectionsNFC offers a low-speed connection with extremely simple setup, and can be used to bootstrap more capable wireless connections.[១៤] For example, the Android Beam software uses NFC to complete the steps of enabling, pairing and establishing a Bluetooth connection when doing a file transfer.[១៥] Nokia has used NFC technology to pair Bluetooth headsets and speakers with one tap in its NFC-enabled devices.[ត្រូវការអំណះអំណាង] The same principle can be applied to the configuration of Wi-Fi networks. Social networkingNFC can be used in social networking situations, such as sharing contacts, photos, videos or files,[១៦] and entering multiplayer mobile games.[១៧] Identity and access tokensThe NFC Forum promotes the potential for NFC-enabled devices to act as electronic identity documents and keycards.[១៤] As NFC has a short range and supports encryption, it may be more suitable than earlier, less private RFID systems. Smartphone automation and NFC tagsSmartphones equipped with NFC can be paired with NFC tags or stickers which can be programmed by NFC apps to automate tasks. These programs can allow for a change of phone settings, a text to be created and sent, an app to be launched, or any number of commands to be executed, limited only by the NFC app and other apps on the smartphone. These applications are perhaps the most practical current uses for NFC since it does not rely on a company or manufacturer but can be utilized immediately by anyone anywhere with an NFC equipped smartphone and an NFC tag.[១៨] HistoryNFC traces its roots back to radio-frequency identification, or RFID. RFID allows a reader to send radio waves to a passive electronic tag for identification, authentication and tracking.
Essential specificationsNFC is a set of short-range wireless technologies, typically requiring a distance of 10 cm or less. NFC operates at 13.56 MHz on ISO/IEC 18000-3 air interface and at rates ranging from 106 kbit/s to 424 kbit/s. NFC always involves an initiator and a target; the initiator actively generates an RF field that can power a passive target. This enables NFC targets to take very simple form factors such as tags, stickers, key fobs, or cards that do not require batteries. NFC peer-to-peer communication is possible, provided both devices are powered.[៦] A patent licensing program for NFC is currently under development by Via Licensing Corporation, an independent subsidiary of Dolby Laboratories. A public, platform-independent NFC library is released under the free GNU Lesser General Public License by the name libnfc.[៣២] NFC tags contain data and are typically read-only, but may be rewriteable. They can be custom-encoded by their manufacturers or use the specifications provided by the NFC Forum, an industry association charged with promoting the technology and setting key standards. The tags can securely store personal data such as debit and credit card information, loyalty program data, PINs and networking contacts, among other information. The NFC Forum defines four types of tags that provide different communication speeds and capabilities in terms of configurability, memory, security, data retention and write endurance. Tags currently offer between 96 and 4,096 bytes of memory.
Comparison with Bluetooth
NFC and Bluetooth are both short-range communication technologies that are integrated into mobile phones. As described in technical detail above, NFC operates at slower speeds than Bluetooth, but consumes far less power and doesn't require pairing.[៣៤] NFC sets up more quickly than standard Bluetooth, but has a lower transfer rate than Bluetooth low energy. With NFC, instead of performing manual configurations to identify devices, the connection between two NFC devices is automatically established quickly: in less than a tenth of a second. The maximum data transfer rate of NFC (424 kbit/s) is slower than that of Bluetooth V2.1 (2.1 Mbit/s). With a maximum working distance of less than 20 cm, NFC has a shorter range, which reduces the likelihood of unwanted interception. That makes NFC particularly suitable for crowded areas where correlating a signal with its transmitting physical device (and by extension, its user) becomes difficult.[ត្រូវការអំណះអំណាង] In contrast to Bluetooth, NFC is compatible with existing passive RFID (13.56 MHz ISO/IEC 18000-3) infrastructures. NFC requires comparatively low power, similar to the Bluetooth V4.0 low energy protocol. When NFC works with an unpowered device (e.g., on a phone that may be turned off, a contactless smart credit card, a smart poster), however, the NFC power consumption is greater than that of Bluetooth V4.0 Low Energy, since illuminating the passive tag needs extra power.[៣៤] Standardization bodies and industry projectsStandardsNFC was approved as an ISO/IEC standard on December 8, 2003 and later as an ECMA standard. NFC is an open platform technology standardized in ECMA-340 and ISO/IEC 18092. These standards specify the modulation schemes, coding, transfer speeds and frame format of the RF interface of NFC devices, as well as initialization schemes and conditions required for data collision-control during initialization for both passive and active NFC modes. Furthermore, they also define the transport protocol, including protocol activation and data-exchange methods. The air interface for NFC is standardized in:
NFC incorporates a variety of existing standards including ISO/IEC 14443 both Type A and Type B, and FeliCa. NFC enabled phones work basically, at least, with existing readers. Especially in "card emulation mode" a NFC device should transmit, at a minimum, a unique ID number to an existing reader. In addition, the NFC Forum has defined a common data format called NFC Data Exchange Format (NDEF), which can store and transport various kinds of items, ranging from any MIME-typed object to ultra-short RTD-documents,[៣៧] such as URLs. The NFC Forum added the Simple NDEF Exchange Protocol to the spec that allows sending and receiving messages between two NFC-enabled devices.[៣៨] GSMAThe GSM Association (GSMA) is the global trade association representing nearly 800 mobile phone operators and more than 200 product and service companies across 219 countries. Many of its members have led NFC trials around the World and are now preparing services for commercial launch.[៣៩] GSM is involved with several initiatives:
StoLPaNStoLPaN ('Store Logistics and Payment with NFC') is a pan-European consortium supported by the European Commission's Information Society Technologies program. StoLPaN will examine the as yet untapped potential for the new kind of local wireless interface, NFC and mobile communication. NFC ForumThe NFC Forum is a non-profit industry association formed on March 18, 2004, by NXP Semiconductors, Sony and Nokia to advance the use of NFC short-range wireless interaction in consumer electronics, mobile devices and PCs. The NFC Forum promotes implementation and standardization of NFC technology to ensure interoperability between devices and services. As of March 2011, the NFC Forum had 135 member companies.[៤២] Alternative form factorsTo realize the benefits of NFC in cellphones not yet equipped with built in NFC chips a new line of complementary devices were created. MicroSD and UICC SIM cards were developed to incorporate industry standard contactless smartcard chips with ISO14443 interface, with or without built-in antenna. The microSD and SIM form factors with built-in antenna have the great potential as bridge devices to shorten the time to market of contactless payment and couponing applications, while the built in NFC controllers gain enough market share. Other standardization bodiesOther standardization bodies that are involved in NFC include:
Security aspectsAlthough the communication range of NFC is limited to a few centimeters, NFC alone does not ensure secure communications. In 2006, Ernst Haselsteiner and Klemens Breitfuß described different possible types of attacks, and detail how to leverage NFC's resistance to man-in-the-middle attacks to establish a specific key.,[៤៣] Unfortunately, as this technique is not part of the ISO standard, NFC offers no protection against eavesdropping and can be vulnerable to data modifications. Applications may use higher-layer cryptographic protocols (e.g., SSL) to establish a secure channel. EavesdroppingThe RF signal for the wireless data transfer can be picked up with antennas. The distance from which an attacker is able to eavesdrop the RF signal depends on numerous parameters, but is typically a small number of metres.[៤៤] Also, eavesdropping is highly affected by the communication mode. A passive device that doesn't generate its own RF field is much harder to eavesdrop on than an active device. An attacker can typically eavesdrop within 10m and 1m for active devices and passive devices, respectively.[៤៣] Data modificationIt is easy to destroy data by using an RFID jammer. There is no way currently to prevent such an attack. However, if NFC devices check the RF field while they are sending, it is possible to detect attacks. It is much more difficult to modify data in such a way that it appears to be valid to users. To modify transmitted data, an intruder has to deal with the single bits of the RF signal. The feasibility of this attack, (i.e., if it is possible to change the value of a bit from 0 to 1 or the other way around), is amongst others subject to the strength of the amplitude modulation. If data is transferred with the modified Miller coding and a modulation of 100%, only certain bits can be modified. A modulation ratio of 100% makes it possible to eliminate a pause of the RF signal, but not to generate a pause where no pause has been. Thus, only a Relay attackBecause NFC devices usually include ISO/IEC 14443 protocols, the relay attacks described are also feasible on NFC.[៤៥][៤៦] For this attack the adversary has to forward the request of the reader to the victim and relay back its answer to the reader in real time, in order to carry out a task pretending to be the owner of the victim's smart card. This is similar to a man-in-the-middle attack. For more information see a survey of practical relay attack concepts.[៤៧] One of libnfc Archived 2009-09-29 at the វេយប៊ែខ ម៉ាស៊ីន. code examples demonstrates a relay attack Archived 2013-01-25 at the វេយប៊ែខ ម៉ាស៊ីន. using only two stock commercial NFC devices. It has also been shown that this attack can be practically implemented using only two NFC-enabled mobile phones.[៤៨] Lost propertyLosing the NFC RFID card or the mobile phone will open access to any finder and act as a single-factor authenticating entity. Mobile phones protected by a PIN code acts as a single authenticating factor. A way to defeat the lost-property threat requires an extended security concept that includes more than one physically independent authentication factor. Walk-offLawfully opened access to a secure NFC function or data is protected by time-out closing after a period of inactivity.[ត្រូវការអំណះអំណាង][ការស្រាវជ្រាវដើម?] Attacks may happen despite provisions to shut down access to NFC after the bearer has become inactive. The known concepts described primarily do not address the geometric distance of a fraudulent attacker using a lost communication entity against lawful access from the actual location of the registered bearer. Additional features to cover such an attack scenario dynamically shall make use of a second wireless authentication factor that remains with the bearer in case of the lost NFC communicator. Relevant approaches are described as an electronic leash or its equivalent, a wireless key. NFC-enabled handsetsIn 2011, handset vendors released more than 40 NFC-enabled handsets.[ត្រូវការអំណះអំណាង] Notably absent among them was Apple with its iPhone; version 6 of its iOS mobile operating system does not support NFC. According to a Wall Street Journal article, today's Apple prefers not to be in a first mover position.[៤៩] Google, on the other hand, includes NFC functionality in their Android mobile operating system and provides a NFC payment service, Google Wallet. BlackBerry devices have also supported NFC using BlackBerry Tag on a number of devices running BlackBerry OS 7.0 and greater.[៥០] Mastercard has added further NFC support for PayPass for the Android and BlackBerry platforms, enabling PayPass users to make payments using their Android or BlackBerry smartphones.[៥១] Microsoft added native NFC functionality in their mobile OS with Windows Phone 8, as well as the Windows 8 operating system. Microsoft provides the "Wallet hub" in Windows Phone 8 for NFC payment, and can integrate multiple NFC payment services within a single application.[៥២] DeploymentAs of April 2011[update][[Category:Articles containing potentially dated statements from Expression error: Unrecognized punctuation character "២".]], several hundred NFC trials have been conducted. Some firms have moved to full-scale service deployments, spanning either a single country or multiple countries. Multi-country deployments include Orange's rollout of NFC technology to banks, retailers, transport, and service providers in multiple European countries,[៥៣] and Airtel Africa and Oberthur Technologies deploying to 15 countries throughout Africa.[៥៤] មើលផងដែរ
កំណត់ចំណាំ
ឯកសារយោង
អានបន្ថែមតំណភ្ជាប់ខាងក្រៅ
ទំព័រគំរូ:Ecma International Standards
|
Portal di Ensiklopedia Dunia