겔폰트-슈나이더 정리겔폰트-슈나이더 정리(Gelfond-Schneider theorem, -定理)는 특정한 대수적 수의 조합이 초월수라는 것을 의미하는 대수적 수론의 정리이다. 역사소련의 수학자인 알렉산드르 겔폰트, 독일의 수학자인 테오도어 슈나이더가 1934년에 독립적으로 증명하였다.[1][2] 이 정리는 힐베르트의 7번째 문제가 긍정적으로 해결하는 역할을 한다. 공식화와 응용a와 b가 대수적 수이고 a ≠ 0, log a ≠ 0이며 b가 무리수이면 ab는 초월수가 된다. 로그에 대한 등가 공식(로그의 밑이 임의로 선택됨)은 다음과 같다.[3]
설명
필연적인 결과다음 숫자의 초월은 그 정리로부터 즉시 뒤따른다.
같이 보기각주
참고 문헌
외부 링크 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia